Diets and nonalcoholic fatty liver disease: The good and the bad

Published:November 11, 2013DOI:https://doi.org/10.1016/j.clnu.2013.11.003

      Summary

      Nonalcoholic fatty liver disease (NAFLD) is now described as the hepatic manifestation of the metabolic syndrome and is the most frequent chronic liver disease, affecting about one out of three people in the western world. NAFLD is strongly linked to insulin resistance, which represents a key risk factor for the development of type 2 diabetes. To date, there are no reliable and efficient pharmacotherapies in the treatment of NAFLD. However, obesity, which represents one of the main features of the metabolic syndrome, is strongly associated with NAFLD. Therefore, lifestyle modifications, i.e. weight loss and increased physical activity, are the very first clinical approaches aiming at treating NAFLD. However, although weight loss is beneficial in NAFLD, certain diets known to induce weight loss can actually cause or exacerbate this disease, and therefore induce insulin resistance, such as very low carbohydrate, high fat diets. Moreover, macronutrient diet composition can impact NAFLD without any change in body weight. Indeed, diets rich in fatty acids, particularly saturated, or in refined carbohydrates such as those found in soft drinks, can actually exacerbate NAFLD. The aim of this review is to discuss the role of weight loss and macronutrients modifications, particularly the role of fat and carbohydrate diet composition, in the treatment of NAFLD.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bellentani S.
        • Scaglioni F.
        • Marino M.
        • Bedogni G.
        Epidemiology of non-alcoholic fatty liver disease.
        Digestive Diseases. 2010; 28: 155-161
        • Anstee Q.M.
        • Targher G.
        • Day C.P.
        Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis.
        Nature Reviews Gastroenterology & Hepatology. 2013; 10: 330-344
        • Cheung O.
        • Sanyal A.J.
        Recent advances in nonalcoholic fatty liver disease.
        Current Opinion in Gastroenterology. 2010; 26: 202-208
        • Jornayvaz F.R.
        • Shulman G.I.
        Diacylglycerol activation of protein kinase cepsilon and hepatic insulin resistance.
        Cell Metabolism. 2012; 15 ([Epub 2012/05/09]): 574-584
        • Machado M.
        • Marques-Vidal P.
        • Cortez-Pinto H.
        Hepatic histology in obese patients undergoing bariatric surgery.
        Journal of Hepatology. 2006; 45: 600-606
        • Gariani K.
        • Philippe J.
        • Jornayvaz F.R.
        Non-alcoholic fatty liver disease and insulin resistance: from bench to bedside.
        Diabetes & Metabolism. 2013; 39: 16-26
        • Musso G.
        • Cassader M.
        • Rosina F.
        • Gambino R.
        Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials.
        Diabetologia. 2012; 55: 885-904
        • Jornayvaz F.R.
        • Birkenfeld A.L.
        • Jurczak M.J.
        • Kanda S.
        • Guigni B.A.
        • Jiang D.C.
        • et al.
        Hepatic insulin resistance in mice with hepatic overexpression of diacylglycerol acyltransferase 2.
        Proceedings of the National Academy of Sciences of the United States of America. 2011; 108: 5748-5752
        • Jornayvaz F.R.
        • Jurczak M.J.
        • Lee H.Y.
        • Birkenfeld A.L.
        • Frederick D.W.
        • Zhang D.
        • et al.
        A high-fat, ketogenic diet causes hepatic insulin resistance in mice, despite increasing energy expenditure and preventing weight gain.
        American Journal of Physiology Endocrinology and Metabolism. 2010; 299 ([Epub 2010/09/03]): E808-E815
        • Camporez J.P.
        • Jornayvaz F.R.
        • Petersen M.
        • Pesta D.
        • Guigni B.A.
        • Serr J.
        • et al.
        Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice.
        Endocrinology. 2013; 154 ([Epub 2013/06/13]): 3099-3109https://doi.org/10.1210/en.2013-1191
        • Camporez J.P.
        • Jornayvaz F.R.
        • Lee H.Y.
        • Kanda S.
        • Guigni B.A.
        • Kahn M.
        • et al.
        Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance.
        Endocrinology. 2013; 154: 1021-1028
        • Cantley J.L.
        • Yoshimura T.
        • Camporez J.P.
        • Zhang D.
        • Jornayvaz F.R.
        • Kumashiro N.
        • et al.
        CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance.
        Proceedings of the National Academy of Sciences of the United States of America. 2013; 110: 1869-1874
        • Jornayvaz F.R.
        • Lee H.Y.
        • Jurczak M.J.
        • Alves T.C.
        • Guebre-Egziabher F.
        • Guigni B.A.
        • et al.
        Thyroid hormone receptor-alpha gene knockout mice are protected from diet-induced hepatic insulin resistance.
        Endocrinology. 2012; 153: 583-591
        • Jurczak M.J.
        • Lee A.H.
        • Jornayvaz F.R.
        • Lee H.Y.
        • Birkenfeld A.L.
        • Guigni B.A.
        • et al.
        Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice.
        The Journal of Biological Chemistry. 2012; 287: 2558-2567
        • Birkenfeld A.L.
        • Lee H.Y.
        • Majumdar S.
        • Jurczak M.J.
        • Camporez J.P.
        • Jornayvaz F.R.
        • et al.
        Influence of the hepatic eukaryotic initiation factor 2alpha (eIF2alpha) endoplasmic reticulum (ER) stress response pathway on insulin-mediated ER stress and hepatic and peripheral glucose metabolism.
        The Journal of Biological Chemistry. 2011; 286: 36163-36170
        • Birkenfeld A.L.
        • Lee H.Y.
        • Guebre-Egziabher F.
        • Alves T.C.
        • Jurczak M.J.
        • Jornayvaz F.R.
        • et al.
        Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice.
        Cell Metabolism. 2011; 14: 184-195
        • Lee H.Y.
        • Birkenfeld A.L.
        • Jornayvaz F.R.
        • Jurczak M.J.
        • Kanda S.
        • Popov V.
        • et al.
        Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance.
        Hepatology. 2011; 54: 1650-1660
        • Hebbard L.
        • George J.
        Animal models of nonalcoholic fatty liver disease.
        Nature Reviews Gastroenterology & Hepatology. 2011; 8: 35-44
        • Asrih M.
        • Jornayvaz F.R.
        Inflammation as a potential link between nonalcoholic fatty liver disease and insulin resistance.
        The Journal of Endocrinology. 2013; 218 ([Epub 2013/07/09]): R25-R36
        • Mouzaki M.
        • Allard J.P.
        The role of nutrients in the development, progression, and treatment of nonalcoholic fatty liver disease.
        Journal of Clinical Gastroenterology. 2012; 46 ([Epub 2012/04/04]): 457-467
        • Bedogni G.
        • Bellentani S.
        Fatty liver: how frequent is it and why?.
        Annals of Hepatology. 2004; 3: 63-65
        • Musso G.
        • Gambino R.
        • De Michieli F.
        • Cassader M.
        • Rizzetto M.
        • Durazzo M.
        • et al.
        Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis.
        Hepatology. 2003; 37: 909-916
        • Toshimitsu K.
        • Matsuura B.
        • Ohkubo I.
        • Niiya T.
        • Furukawa S.
        • Hiasa Y.
        • et al.
        Dietary habits and nutrient intake in non-alcoholic steatohepatitis.
        Nutrition. 2007; 23: 46-52
        • Machado M.V.
        • Ravasco P.
        • Jesus L.
        • Marques-Vidal P.
        • Oliveira C.R.
        • Proenca T.
        • et al.
        Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet.
        Scandinavian Journal of Gastroenterology. 2008; 43: 95-102
        • Assy N.
        • Nassar F.
        • Nasser G.
        • Grosovski M.
        Olive oil consumption and non-alcoholic fatty liver disease.
        World Journal of Gastroenterology: WJG. 2009; 15: 1809-1815
        • Masterton G.S.
        • Plevris J.N.
        • Hayes P.C.
        Review article: omega-3 fatty acids – a promising novel therapy for non-alcoholic fatty liver disease.
        Alimentary Pharmacology & Therapeutics. 2010; 31: 679-692
        • Storlien L.H.
        • Kraegen E.W.
        • Chisholm D.J.
        • Ford G.L.
        • Bruce D.G.
        • Pascoe W.S.
        Fish oil prevents insulin resistance induced by high-fat feeding in rats.
        Science. 1987; 237: 885-888
        • Levy J.R.
        • Clore J.N.
        • Stevens W.
        Dietary n-3 polyunsaturated fatty acids decrease hepatic triglycerides in Fischer 344 rats.
        Hepatology. 2004; 39: 608-616
        • Capanni M.
        • Calella F.
        • Biagini M.R.
        • Genise S.
        • Raimondi L.
        • Bedogni G.
        • et al.
        Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study.
        Alimentary Pharmacology & Therapeutics. 2006; 23: 1143-1151
        • Tanaka N.
        • Sano K.
        • Horiuchi A.
        • Tanaka E.
        • Kiyosawa K.
        • Aoyama T.
        Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis.
        Journal of Clinical Gastroenterology. 2008; 42: 413-418
        • Brownell K.D.
        • Farley T.
        • Willett W.C.
        • Popkin B.M.
        • Chaloupka F.J.
        • Thompson J.W.
        • et al.
        The public health and economic benefits of taxing sugar-sweetened beverages.
        The New England Journal of Medicine. 2009; 361: 1599-1605
        • Malik V.S.
        • Popkin B.M.
        • Bray G.A.
        • Despres J.P.
        • Hu F.B.
        Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk.
        Circulation. 2010; 121: 1356-1364
        • Maersk M.
        • Belza A.
        • Stodkilde-Jorgensen H.
        • Ringgaard S.
        • Chabanova E.
        • Thomsen H.
        • et al.
        Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: a 6-mo randomized intervention study.
        The American Journal of Clinical Nutrition. 2012; 95: 283-289
        • Ouyang X.
        • Cirillo P.
        • Sautin Y.
        • McCall S.
        • Bruchette J.L.
        • Diehl A.M.
        • et al.
        Fructose consumption as a risk factor for non-alcoholic fatty liver disease.
        Journal of Hepatology. 2008; 48: 993-999
        • Stanhope K.L.
        • Havel P.J.
        Fructose consumption: considerations for future research on its effects on adipose distribution, lipid metabolism, and insulin sensitivity in humans.
        The Journal of Nutrition. 2009; 139: 1236S-1241S
        • Stanhope K.L.
        • Schwarz J.M.
        • Keim N.L.
        • Griffen S.C.
        • Bremer A.A.
        • Graham J.L.
        • et al.
        Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans.
        The Journal of Clinical Investigation. 2009; 119: 1322-1334
        • Abdelmalek M.F.
        • Suzuki A.
        • Guy C.
        • Unalp-Arida A.
        • Colvin R.
        • Johnson R.J.
        • et al.
        Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease.
        Hepatology. 2010; 51: 1961-1971
        • Yamaguchi K.
        • Yang L.
        • McCall S.
        • Huang J.
        • Yu X.X.
        • Pandey S.K.
        • et al.
        Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.
        Hepatology. 2007; 45: 1366-1374
        • Assy N.
        • Nasser G.
        • Kamayse I.
        • Nseir W.
        • Beniashvili Z.
        • Djibre A.
        • et al.
        Soft drink consumption linked with fatty liver in the absence of traditional risk factors.
        Canadian Journal of Gastroenterology = Journal canadien de gastroenterologie. 2008; 22: 811-816
        • Zelber-Sagi S.
        • Nitzan-Kaluski D.
        • Goldsmith R.
        • Webb M.
        • Blendis L.
        • Halpern Z.
        • et al.
        Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): a population based study.
        Journal of Hepatology. 2007; 47: 711-717
        • Abid A.
        • Taha O.
        • Nseir W.
        • Farah R.
        • Grosovski M.
        • Assy N.
        Soft drink consumption is associated with fatty liver disease independent of metabolic syndrome.
        Journal of Hepatology. 2009; 51: 918-924
        • Samaha F.F.
        • Iqbal N.
        • Seshadri P.
        • Chicano K.L.
        • Daily D.A.
        • McGrory J.
        • et al.
        A low-carbohydrate as compared with a low-fat diet in severe obesity.
        The New England Journal of Medicine. 2003; 348: 2074-2081
        • Bisschop P.H.
        • de Metz J.
        • Ackermans M.T.
        • Endert E.
        • Pijl H.
        • Kuipers F.
        • et al.
        Dietary fat content alters insulin-mediated glucose metabolism in healthy men.
        The American Journal of Clinical Nutrition. 2001; 73: 554-559
        • Johnston C.S.
        • Tjonn S.L.
        • Swan P.D.
        • White A.
        • Hutchins H.
        • Sears B.
        Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets.
        The American Journal of Clinical Nutrition. 2006; 83: 1055-1061
        • Fung T.T.
        • van Dam R.M.
        • Hankinson S.E.
        • Stampfer M.
        • Willett W.C.
        • Hu F.B.
        Low-carbohydrate diets and all-cause and cause-specific mortality: two cohort studies.
        Annals of Internal Medicine. 2010; 153: 289-298
        • de Koning L.
        • Fung T.T.
        • Liao X.
        • Chiuve S.E.
        • Rimm E.B.
        • Willett W.C.
        • et al.
        Low-carbohydrate diet scores and risk of type 2 diabetes in men.
        The American Journal of Clinical Nutrition. 2011; 93: 844-850
        • Cortez-Pinto H.
        • Jesus L.
        • Barros H.
        • Lopes C.
        • Moura M.C.
        • Camilo M.E.
        How different is the dietary pattern in non-alcoholic steatohepatitis patients?.
        Clinical Nutrition. 2006; 25: 816-823
        • Andersen T.
        • Gluud C.
        • Franzmann M.B.
        • Christoffersen P.
        Hepatic effects of dietary weight loss in morbidly obese subjects.
        Journal of Hepatology. 1991; 12: 224-229
      1. Weight cycling. National Task Force on the Prevention and treatment of obesity.
        JAMA: The Journal of the American Medical Association. 1994; 272: 1196-1202
        • Lazo M.
        • Solga S.F.
        • Horska A.
        • Bonekamp S.
        • Diehl A.M.
        • Brancati F.L.
        • et al.
        Effect of a 12-month intensive lifestyle intervention on hepatic steatosis in adults with type 2 diabetes.
        Diabetes Care. 2010; 33: 2156-2163
        • Petersen K.F.
        • Dufour S.
        • Befroy D.
        • Lehrke M.
        • Hendler R.E.
        • Shulman G.I.
        Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduction in patients with type 2 diabetes.
        Diabetes. 2005; 54: 603-608
        • Sacks F.M.
        • Bray G.A.
        • Carey V.J.
        • Smith S.R.
        • Ryan D.H.
        • Anton S.D.
        • et al.
        Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates.
        The New England Journal of Medicine. 2009; 360: 859-873
        • Westerbacka J.
        • Lammi K.
        • Hakkinen A.M.
        • Rissanen A.
        • Salminen I.
        • Aro A.
        • et al.
        Dietary fat content modifies liver fat in overweight nondiabetic subjects.
        The Journal of Clinical Endocrinology and Metabolism. 2005; 90: 2804-2809