Butyrate modulates oxidative stress in the colonic mucosa of healthy humans


      Background & Aims

      Butyrate, a short-chain fatty acid produced by colonic microbial fermentation of undigested carbohydrates, has been implicated in the maintenance of colonic health. This study evaluates whether butyrate plays a role in oxidative stress in the healthy colonic mucosa.


      A randomized, double blind, cross-over study with 16 healthy volunteers was performed. Treatments consisted of daily rectal administration of a 60 ml enema containing 100 mM sodium butyrate or saline for 2 weeks. After each treatment, a blood sample was taken and mucosal biopsies were obtained from the sigmoid colon. In biopsies, the trolox equivalent antioxidant capacity, activity of glutathione-S-transferase, concentration of uric acid, glutathione (GSH), glutathione disulfide and malondialdehyde, and expression of genes involved in GSH and uric acid metabolism was determined. Secondary outcome parameters were CRP, calprotectin and intestinal fatty acid binding protein in plasma and histological inflammatory scores.


      Butyrate treatment resulted in significantly higher GSH (p < 0.05) and lower uric acid (p < 0.01) concentrations compared to placebo. Changes in GSH and uric acid were accompanied by increased and decreased expression, respectively, of their rate limiting enzymes determined by RT–PCR. No significant differences were found in other parameters.


      This study demonstrated that butyrate is able to beneficially affect oxidative stress in the healthy human colon.


      Non-standard abbreviations:

      ROS (reactive oxygen species), tGSH (total glutathione), GSH (reduced glutathione), GSSG (glutathione disulfide), TEAC (trolox equivalent antioxidant capacity), GST (glutathione-S-transferase), MDA (malondialdehyde), CANX (calnexin), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), 18SrRNA (18S ribosomal RNA), GPX (glutathione peroxidase), GR (glutathione reductase), GS (glutathione synthetase), GCLC (glutamate–cysteine ligase, catalytic subunit), GCLM (glutamate–cysteine ligase, modifier subunit), XDH (xanthine dehydrogenase)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Daly K.
        • Shirazi-Beechey S.P.
        Microarray analysis of butyrate regulated genes in colonic epithelial cells.
        DNA Cell Biol. 2006; 25: 49-62
        • Hamer H.M.
        • Jonkers D.
        • Venema K.
        • et al.
        Review article: the role of butyrate on colonic function.
        Aliment Pharmacol Ther. 2008; 27: 104-119
        • Segain J.P.
        • Raingeard de la Bletiere D.
        • Bourreille A.
        • et al.
        Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease.
        Gut. 2000; 47: 397-403
        • Kinoshita M.
        • Suzuki Y.
        • Saito Y.
        Butyrate reduces colonic paracellular permeability by enhancing PPARgamma activation.
        Biochem Biophys Res Commun. 2002; 293: 827-831
        • Luhrs H.
        • Gerke T.
        • Muller J.G.
        • et al.
        Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis.
        Scand J Gastroenterol. 2002; 37: 458-466
        • Scheppach W.
        • Sommer H.
        • Kirchner T.
        • et al.
        Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis.
        Gastroenterology. 1992; 103: 51-56
        • Harig J.M.
        • Soergel K.H.
        • Komorowski R.A.
        • Wood C.M.
        Treatment of diversion colitis with short-chain-fatty acid irrigation.
        N Engl J Med. 1989; 320: 23-28
        • Guillemot F.
        • Colombel J.F.
        • Neut C.
        • et al.
        Treatment of diversion colitis by short-chain fatty acids. Prospective and double-blind study.
        Dis Colon Rectum. 1991; 34: 861-864
        • Rezaie A.
        • Parker R.D.
        • Abdollahi M.
        Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause?.
        Dig Dis Sci. 2007; 52: 2015-2021
        • Skrzydlewska E.
        • Sulkowski S.
        • Koda M.
        • et al.
        Lipid peroxidation and antioxidant status in colorectal cancer.
        World J Gastroenterol. 2005; 11: 403-406
        • Musch M.W.
        • Walsh-Reitz M.M.
        • Chang E.B.
        Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption.
        Am J Physiol Gastrointest Liver Physiol. 2006; 290: G222-G231
        • Abrahamse S.L.
        • Pool-Zobel B.L.
        • Rechkemmer G.
        Potential of short chain fatty acids to modulate the induction of DNA damage and changes in the intracellular calcium concentration by oxidative stress in isolated rat distal colon cells.
        Carcinogenesis. 1999; 20: 629-634
        • Rosignoli P.
        • Fabiani R.
        • De Bartolomeo A.
        • et al.
        Protective activity of butyrate on hydrogen peroxide-induced DNA damage in isolated human colonocytes and HT29 tumour cells.
        Carcinogenesis. 2001; 22: 1675-1680
        • Toden S.
        • Bird A.R.
        • Topping D.L.
        • Conlon M.A.
        Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain Fatty acids.
        Cancer Biol Ther. 2007; 6: 253-258
        • Rodriguez-Cabezas M.E.
        • Galvez J.
        • et al.
        Dietary fiber down-regulates colonic tumor necrosis factor alpha and nitric oxide production in trinitrobenzenesulfonic acid-induced colitic rats.
        J Nutr. 2002; 132: 3263-3271
        • Ebert M.N.
        • Klinder A.
        • Peters W.H.
        • et al.
        Expression of glutathione S-transferases (GSTs) in human colon cells and inducibility of GSTM2 by butyrate.
        Carcinogenesis. 2003; 24: 1637-1644
        • Ranganna K.
        • Mathew O.P.
        • Yatsu F.M.
        • Yousefipour Z.
        • Hayes B.E.
        • Milton S.G.
        Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation.
        FEBS J. 2007; 274: 5962-5978
        • Knoll N.
        • Ruhe C.
        • Veeriah S.
        • et al.
        Genotoxicity of 4-hydroxy-2-nonenal in human colon tumor cells is associated with cellular levels of glutathione and the modulation of glutathione S-transferase A4 expression by butyrate.
        Toxicol Sci. 2005; 86: 27-35
        • Habig W.H.
        • Jakoby W.B.
        Assays for differentiation of glutathione S-transferases.
        Methods Enzymol. 1981; 77: 398-405
        • Fischer M.A.
        • Gransier T.J.
        • Beckers L.M.
        • Bekers O.
        • Bast A.
        • Haenen G.R.
        Determination of the antioxidant capacity in blood.
        Clin Chem Lab Med. 2005; 43: 735-740
        • Lux O.
        • Naidoo D.
        • Salonikas C.
        Improved HPLC method for the simultaneous measurement of allantoin and uric acid in plasma.
        Ann Clin Biochem. 1992; 29: 674-675
        • Lepage G.
        • Munoz G.
        • Champagne J.
        • Roy C.C.
        Preparative steps necessary for the accurate measurement of malondialdehyde by high-performance liquid chromatography.
        Anal Biochem. 1991; 197: 277-283
        • Vandeputte C.
        • Guizon I.
        • Genestie-Denis I.
        • Vannier B.
        • Lorenzon G.
        A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol.
        Cell Biol Toxicol. 1994; 10: 415-421
        • Wardle T.D.
        • Hall L.
        • Turnberg L.A.
        Use of coculture of colonic mucosal biopsies to investigate the release of eicosanoids by inflamed and uninflamed mucosa from patients with inflammatory bowel disease.
        Gut. 1992; 33: 1644-1651
        • Wiercinska-Drapalo A.
        • Jaroszewicz J.
        • Siwak E.
        • Pogorzelska J.
        • Prokopowicz D.
        Intestinal fatty acid binding protein (I-FABP) as a possible biomarker of ileitis in patients with ulcerative colitis.
        Regul Peptides. 2008; 147: 25-28
        • Akaike H.
        Information theory and an extension of the maximum likelihood principle.
        in: Petrov B.N. Csaki F. Second international symposium on interference theory. Akademiai Kiado, Budapest1973: 267-281
        • Kim J.Y.
        • Yim J.H.
        • Cho J.H.
        • et al.
        Adrenomedullin regulates cellular glutathione content via modulation of gamma-glutamate-cysteine ligase catalytic subunit expression.
        Endocrinology. 2006; 147: 1357-1364
        • Rahman I.
        • MacNee W.
        Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches.
        Free Radic Biol Med. 2000; 28: 1405-1420
        • Bauer-Marinovic M.
        • Florian S.
        • Muller-Schmehl K.
        • Glatt H.
        • Jacobasch G.
        Dietary resistant starch type 3 prevents tumor induction by 1,2-dimethylhydrazine and alters proliferation, apoptosis and dedifferentiation in rat colon.
        Carcinogenesis. 2006; 27: 1849-1859
        • Brigelius-Flohe R.
        Glutathione peroxidases and redox-regulated transcription factors.
        Biol Chem. 2006; 387: 1329-1335
        • Martensson J.
        • Jain A.
        • Meister A.
        Glutathione is required for intestinal function.
        Proc Natl Acad Sci USA. 1990; 87: 1715-1719
        • Loguercio C.
        • D'Argenio G.
        • Delle Cave M.
        • et al.
        Glutathione supplementation improves oxidative damage in experimental colitis.
        Dig Liver Dis. 2003; 35: 635-641
        • Holmes E.W.
        • Yong S.L.
        • Eiznhamer D.
        • Keshavarzian A.
        Glutathione content of colonic mucosa: evidence for oxidative damage in active ulcerative colitis.
        Dig Dis Sci. 1998; 43: 1088-1095
        • Iantomasi T.
        • Marraccini P.
        • Favilli F.
        • et al.
        Glutathione metabolism in Crohn's disease.
        Biochem Med Metab Biol. 1994; 53: 87-91
        • Mudway I.S.
        • Stenfors N.
        • Duggan S.T.
        • et al.
        An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants.
        Arch Biochem Biophys. 2004; 423: 200-212
        • Bodin P.
        • Burnstock G.
        Increased release of ATP from endothelial cells during acute inflammation.
        Inflamm Res. 1998; 47: 351-354
        • Troost F.J.
        • Saris W.H.
        • Haenen G.R.
        • Bast A.
        • Brummer R.J.
        New method to study oxidative damage and antioxidants in the human small bowel: effects of iron application.
        Am J Physiol Gastrointest Liver Physiol. 2003; 285: G354-G359
        • Reynolds P.D.
        • Rhenius S.T.
        • Hunter J.O.
        Xanthine oxidase activity is not increased in the colonic mucosa of ulcerative colitis.
        Aliment Pharmacol Ther. 1996; 10: 737-741
        • Siems W.G.
        • Grune T.
        • Werner A.
        • Gerber G.
        • Buntrock P.
        • Schneider W.
        Protective influence of oxypurinol on the trinitrobenzene sulfonic acid(TNB) model of inflammatory bowel disease in rats.
        Cell Mol Biol. 1992; 38: 189-199
        • Pool-Zobel B.
        • Veeriah S.
        • Bohmer F.D.
        Modulation of xenobiotic metabolising enzymes by anticarcinogens—focus on glutathione S-transferases and their role as targets of dietary chemoprevention in colorectal carcinogenesis.
        Mutat Res. 2005; 591: 74-92
        • Sauer J.
        • Richter K.K.
        • Pool-Zobel B.L.
        Products formed during fermentation of the prebiotic inulin with human gut flora enhance expression of biotransformation genes in human primary colon cells.
        Br J Nutr. 2007; 97: 928-937