Diet-induced metabolic acidosis

Published:March 25, 2011DOI:https://doi.org/10.1016/j.clnu.2011.03.008

      Summary

      The modern Western-type diet is deficient in fruits and vegetables and contains excessive animal products, generating the accumulation of non-metabolizable anions and a lifespan state of overlooked metabolic acidosis, whose magnitude increases progressively with aging due to the physiological decline in kidney function. In response to this state of diet-derived metabolic acidosis, the kidney implements compensating mechanisms aimed to restore the acid-base balance, such as the removal of the non-metabolizable anions, the conservation of citrate, and the enhancement of kidney ammoniagenesis and urinary excretion of ammonium ions. These adaptive processes lower the urine pH and induce an extensive change in urine composition, including hypocitraturia, hypercalciuria, and nitrogen and phosphate wasting. Low urine pH predisposes to uric acid stone formation. Hypocitraturia and hypercalciuria are risk factors for calcium stone disease. Even a very mild degree of metabolic acidosis induces skeletal muscle resistance to the insulin action and dietary acid load may be an important variable in predicting the metabolic abnormalities and the cardiovascular risk of the general population, the overweight and obese persons, and other patient populations including diabetes and chronic kidney failure. High dietary acid load is more likely to result in diabetes and systemic hypertension and may increase the cardiovascular risk. Results of recent observational studies confirm an association between insulin resistance and metabolic acidosis markers, including low serum bicarbonate, high serum anion gap, hypocitraturia, and low urine pH.

      Keywords

      Abbreviations:

      DASH (dietary approaches to stop hypertension), NEAP (net endogenous acid production), RNAE (renal net acid excretion), TA (titratable acid), HOMA-IR (homeostasis model assessment–insulin resistance), NHANES (national health and nutrition examination surveys)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Hunt J.N.
        The influence of dietary sulfur on the urinary output of acid in man.
        Clin Sci. 1956; 15: 119-134
        • Bresslau N.A.
        • Brinkley L.
        • Hill K.D.
        • Pak C.Y.
        Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism.
        J Clin Endocrinol Metab. 1988; 66: 140-146
        • Maurer M.
        • Riesen W.
        • Muser J.
        • Hulter H.N.
        • Krapf R.
        Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans.
        Am J Physiol Ren Physiol. 2003; 284: F32-F40
        • Demigne C.
        • Sabboh H.
        • Remesy C.
        • Meneton P.
        Protective effects of high dietary potassium: nutritional and metabolic aspects.
        J Nutr. 2004; 134: 2903-2906
        • Jehle S.
        • Zanetti A.
        • Muser J.
        • Hulter H.N.
        • Krapf R.
        Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia.
        J Am Soc Nephrol. 2006; 17: 3213-3222
        • Lennon E.J.
        • Lemann Jr., J.
        Influence of diet composition on endogenous fixed acid production.
        Am J Clin Nutr. 1968; 21: 451-456
        • Frassetto L.A.
        • Todd K.M.
        • Morris Jr., R.C.
        • Sebastian A.
        Estimation of net endogenous noncarbonic acid production in humans from diet potassium and protein contents.
        Am J Clin Nutr. 1998; 68: 576-583
        • Frassetto L.
        • Morris Jr., R.C.
        • Sellmeyer D.E.
        • Todd K.
        • Sebastian A.
        Diet, evolution and aging–the pathophysiologic effects of the post-agricultural inversion of the potassium-to-sodium and base-to-chloride ratios in the human diet.
        Eur J Nutr. 2001; 40: 200-213
        • Lemann Jr., J.
        Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review.
        Nephron. 1999; 81: 18-25
        • Remer T.
        Influence of nutrition on acid-base balance–metabolic aspects.
        Eur J Nutr. 2001; 40: 214-220
        • Frassetto L.A.
        • Morris Jr., R.C.
        • Sebastian A.
        Dietary sodium chloride intake independently predicts the degree of hyperchloremic metabolic acidosis in healthy humans consuming a net acid-producing diet.
        Am J Physiol Ren Physiol. 2007; 293: F521-F525
        • Lindeman R.D.
        • Tobin J.
        • Shock N.W.
        Longitudinal studies on the rate of decline in renal function with age.
        J Am Geriatr Soc. 1985; 33: 278-285
        • Cameron M.A.
        • Maalouf N.M.
        • Adams-Huet B.
        • Moe O.W.
        • Sakhaee K.
        Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis.
        J Am Soc Nephrol. 2006; 17: 1422-1428
        • Maalouf N.M.
        • Cameron M.A.
        • Moe O.W.
        • Adams-Huet B.
        • Sakhaee K.
        Low urine pH: a novel feature of the metabolic syndrome.
        Clin J Am Soc Nephrol. 2007; 2: 883-888
        • Gyorke Z.S.
        • Sulyok E.
        • Guignard J.P.
        Ammonium chloride metabolic acidosis and the activity of renin-angiotensin-aldosterone system in children.
        Eur J Pediatr. 1991; 150: 547-549
        • Krapf R.
        • Vetsch R.
        • Vetsch W.
        • Hulter H.N.
        Chronic metabolic acidosis increases the serum concentration of 1,25-dihydroxyvitamin D in humans by stimulating its production rate. Critical role of acidosis-induced renal hypophosphatemia.
        J Clin Invest. 1992; 90: 2456-2463
        • Morris Jr., R.C.
        • Schmidlin O.
        • Tanaka M.
        • Forman A.
        • Frassetto L.
        • Sebastian A.
        Differing effects of supplemental KCl and KHCO3: pathophysiological and clinical implications.
        Semin Nephrol. 1999; 19: 487-493
        • Hu J.F.
        • Zhao X.H.
        • Parpia B.
        • Campbell T.C.
        Dietary intakes and urinary excretion of calcium and acids: a cross-sectional study of women in China.
        Am J Clin Nutr. 1993; 58: 396-406
        • Kerstetter J.E.
        • O’Brien K.O.
        • Insogna K.L.
        Dietary protein, calcium metabolism, and skeletal homeostasis revisited.
        Am J Clin Nutr. 2003; 78: 584S-592S
        • Appel L.J.
        • Moore T.J.
        • Obarzanek E.
        • Vollmer W.M.
        • Svetkey L.P.
        • Sacks F.M.
        • et al.
        DASH Collaborative Research Group. A clinical trial of the effects of dietary patterns on blood pressure.
        N Engl J Med. 1997; 336: 1117-1124
        • Morris Jr., R.C.
        • Schmidlin O.
        • Frassetto L.A.
        • Sebastian A.
        Relationship and interaction between sodium and potassium.
        J Am Coll Nutr. 2006; 25: 262S-270S
        • Lemann Jr., J.
        • Pleuss J.A.
        • Gray R.W.
        Potassium causes calcium retention in healthy adults.
        J Nutr. 1993; 123: 1623-1626
        • Simpson D.P.
        Citrate excretion: a window on renal metabolism.
        Am J Physiol. 1983; 244: F223-F234
        • Owen E.E.
        • Robinson R.R.
        Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride.
        J Clin Invest. 1963; 42: 263-276
        • Tizianello A.
        • Deferrari G.
        • Garibotto G.
        • Robaudo C.
        • Acquarone N.
        • Ghiggeri G.M.
        Renal ammoniagenesis in an early stage of metabolic acidosis in man.
        J Clin Invest. 1982; 69: 240-250
        • Sartorius O.W.
        • Roemmelt J.C.
        • Pitts R.F.
        • Calhoon D.
        • Miner P.
        The renal regulation of acid-base balance in man. The nature of the renal compensations in ammonium chloride acidosis.
        J Clin Invest. 1949; 28: 423-439
        • Sulyok E.
        • Guignard J.P.
        Effect of ammonium-chloride-induced metabolic acidosis on renal electrolyte handling in human neonates.
        Pediatr Nephrol. 1990; 4: 415-420
        • Garibotto G.
        • Verzola D.
        • Sofia A.
        • Saffioti S.
        • Menesi F.
        • Vigo E.
        Mechanisms of renal ammonia production and protein turnover.
        Metab Brain Dis. 2009; 24: 159-167
        • Bosch J.P.
        • Saccaggi A.
        • Lauer A.
        • Ronco C.
        • Belledonne M.
        • Glabman S.
        Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate.
        Am J Med. 1983; 75: 943-950
        • Kontessis P.
        • Jones S.
        • Dodds R.
        • Trevisan R.
        • Nosadini R.
        • Fioretto P.
        Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins.
        Kidney Int. 1990; 38: 136-144
        • de Santo N.G.
        • Capasso G.
        • Malnic G.
        • Anastasio P.
        • Spitali L.
        • D’Angelo A.
        Effect of an acute oral protein load on renal acidification in healthy humans and in patients with chronic renal failure.
        J Am Soc Nephrol. 1997; 8: 784-792
        • Ribstein J.
        • du Cailar G.
        • Mimran A.
        Combined renal effects of overweight and hypertension.
        Hypertension. 1995; 26: 610-615
        • Chagnac A.
        • Weinstein T.
        • Herman M.
        • Hirsh J.
        • Gafter U.
        • Ori Y.
        The effects of weight loss on renal function in patients with severe obesity.
        J Am Soc Nephrol. 2003; 14: 1480-1486
        • Christiansen J.S.
        • Parving H.H.
        The relationship between kidney size and function in short-term diabetic patients.
        Diabetologia. 1982; 22: 494
        • Inomata S.
        Renal hypertrophy as a prognostic index for the progression of diabetic renal disease in non-insulin-dependent diabetes mellitus.
        J Diabetes Complications. 1993; 7: 28-33
        • Kontessis P.A.
        • Bossinakou I.
        • Sarika L.
        • Iliopoulou E.
        • Papantoniou A.
        • Trevisan R.
        Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients.
        Diabetes Care. 1995; 18: 1233
        • Azadbakht L.
        • Atabak S.
        • Esmaillzadeh A.
        Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial.
        Diabetes Care. 2008; 31: 648-654
        • Barnard N.D.
        • Cohen J.
        • Jenkins D.J.A.
        • Turner-McGrievy G.
        • Gloede L.
        • Jaster B.
        A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes.
        Diabetes Care. 2006; 29: 1777-1783
        • Robertson W.G.
        • Peacock M.
        The pattern of urinary stone disease in Leeds and in the United Kingdom in relation to animal protein intake during the period 1960–1980.
        Urol Int. 1982; 37: 394-399
        • Taylor E.N.
        • Stampfer M.J.
        • Curhan G.C.
        Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up.
        J Am Soc Nephrol. 2004; 15: 3225-3232
        • Ballmer P.E.
        • Imoberdorf R.
        Influence of acidosis on protein metabolism.
        Nutrition. 1995; 11: 462-468
        • Frassetto L.
        • Morris Jr., R.C.
        • Sebastian A.
        Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women.
        J Clin Endocrinol Metab. 1997; 82: 254-259
        • Dawson-Hughes B.
        • Harris S.S.
        • Ceglia L.
        Alkaline diets favor lean tissue mass in older adults.
        Am J Clin Nutr. 2008; 87: 662-665
        • DeFronzo R.A.
        • Beckles A.D.
        Glucose intolerance following chronic metabolic acidosis in man.
        Am J Physiol. 1979; 236: E328-E334
        • Lovejoy J.
        • Newby F.D.
        • Gebhart S.S.
        • DiGirolamo M.
        Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin.
        Metabolism. 1992; 41: 22-27
        • Walker B.G.
        • Phear D.N.
        • Martin F.I.R.
        • Baird C.W.
        Inhibition of insulin by acidosis.
        Lancet. 1963; 9: 964-965
        • Ginsberg H.N.
        Investigation of insulin sensitivity in treated subjects with ketosis-prone diabetes mellitus.
        Diabetes. 1977; 26: 278-283
        • DeFronzo R.A.
        • Andres R.
        • Edgar P.
        • Walker W.G.
        Carbohydrate metabolism in uremia: a review.
        Medicine. 1973; 52: 469-481
        • Waybill M.M.
        • Clore J.N.
        • Emerick R.A.
        • Watlington C.O.
        • Schoolwerth A.C.
        Effects of corticosteroids on urinary ammonium excretion in humans.
        J Am Soc Nephrol. 1994; 4: 1531-1537
        • Farwell W.R.
        • Taylor E.N.
        Serum bicarbonate, anion gap and insulin resistance in the National Health and Nutrition Examination Survey.
        Diabet Med. 2008; 25: 798-804
        • Cupisti A.
        • Meola M.
        • D’Alessandro C.
        • Bernabini G.
        • Pasquali E.
        • Carpi A.
        • et al.
        Insulin resistance and low urinary citrate excretion in calcium stone formers.
        Biomed Pharmacother. 2007; 61: 86-90
        • Abate N.
        • Chandalia M.
        • Cabo-Chan Jr., A.V.
        • Moe O.W.
        • Sakhaee K.
        The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance.
        Kidney Int. 2004; 65: 386-392
        • Takahashi S.
        • Inokuchi T.
        • Kobayashi T.
        • Ka T.
        • Tsutsumi Z.
        • Moriwaki Y.
        • et al.
        Relationship between insulin resistance and low urinary pH in patients with gout, and effects of PPAR-alpha agonists on urine pH.
        Horm Metab Res. 2007; 39: 511-514
        • Sakhaee K.
        • Adams-Huet B.
        • Moe O.W.
        • Pak C.Y.
        Pathophysiologic basis for normouricosuric uric acid nephrolithiasis.
        Kidney Int. 2002; 62: 971-979
        • Taylor E.N.
        • Forman J.P.
        • Farwell W.R.
        Serum anion gap and blood pressure in the national health and nutrition examination survey.
        Hypertension. 2007; 50: 320-324
        • Forman J.P.
        • Rifas-Shiman S.L.
        • Taylor E.N.
        • Lane K.
        • Gillman M.W.
        Association between the serum anion gap and blood pressure among patients at Harvard Vanguard Medical Associates.
        J Hum Hypertens. 2008; 22: 122-125
        • Taylor E.N.
        • Mount D.B.
        • Forman J.P.
        • Curhan G.C.
        Association of prevalent hypertension with 24-hour urinary excretion of calcium, citrate, and other factors.
        Am J Kidney Dis. 2006; 47: 780-789
        • Valachovicová M.
        • Krajcovicová-Kudlacková M.
        • Blazicek P.
        • Babinská K.
        No evidence of insulin resistance in normal weight vegetarians. A case control study.
        Eur J Nutr. 2006; 45: 52-54
        • Barnard N.D.
        • Scialli A.R.
        • Turner-McGrievy G.
        • Lanou A.J.
        • Glass J.
        The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity.
        Am J Med. 2005; 188: 991-997
        • Colditz G.A.
        • Manson J.E.
        • Stampler M.J.
        • Rosner B.
        • Willet W.C.
        • Spelzer F.E.
        Diet and risk of clinical diabetes in women.
        Am J Clin Nutr. 1992; 55: 1018-1023
        • Krishna G.G.
        • Chusid P.
        • Hoeldtke R.D.
        Mild potassium depletion provokes renal sodium retention.
        J Lab Clin Med. 1987; 109: 724-730
        • Fung T.T.
        • Chiuve S.E.
        • McCullough M.L.
        • Rexrode K.M.
        • Logroscino G.
        • Hu F.B.
        Adherence to a DASH-style diet and risk of coronary heart disease and stroke in women.
        Arch Intern Med. 2008; 168: 713-720