Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents

Published:March 06, 2013DOI:https://doi.org/10.1016/j.clnu.2013.02.007

      Summary

      Background & aims

      This study is a part of the clinical trials with probiotic bacterium Lactobacillus salivarius Ls-33 conducted in obese adolescents. Previously reported clinical studies showed no effect of Ls-33 consumption on the metabolic syndrome in the subject group. The aim of the study was to investigate the impact of L. salivarius Ls-33 on fecal microbiota in obese adolescents.

      Methods

      The study was a double-blinded intervention with 50 subjects randomized to intake of L. salivarius Ls-33 or placebo for 12 weeks. The fecal microbiota was assessed by real-time quantitative PCR before and after intervention. Concentrations of fecal short chain fatty acids were determined using gas chromatography.

      Results

      Ratios of Bacteroides–Prevotella–Porphyromonas group to Firmicutes belonging bacteria, including Clostridium cluster XIV, Blautia coccoides_Eubacteria rectale group and Roseburia intestinalis, were significantly increased (p ≤ 0.05) after administration of Ls-33. The cell numbers of fecal bacteria, including the groups above as well as Clostridium cluster I, Clostridium cluster IV, Faecalibacterium prausnitzii, Enterobacteriaceae, Enterococcus, the Lactobacillus group and Bifidobacterium were not significantly altered by intervention. Similarly, short chain fatty acids remained unaffected.

      Conclusion

      L. salivarius Ls-33 might modify the fecal microbiota in obese adolescents in a way not related to metabolic syndrome.
      Clinical trial number: NCT 01020617

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Raftis E.J.
        • Salvetti E.
        • Torriani S.
        • Felis G.E.
        • O'Toole P.W.
        Genomic diversity of Lactobacillus salivarius.
        Appl Environ Microbiol. 2011; 77: 954-965
        • Collins J.K.
        • Dunne C.
        • Murphy L.
        • Morrissey D.
        • O"Mahony L.
        • O"Sullivan E.
        • et al.
        A randomised controlled trial of a probiotic Lactobacillus strain in healthy adults: assessment of its delivery, transit and influence on microbial flora and enteric immunity.
        Microb Ecol Health Dis. 2002; 14: 81-89
        • Maldonado J.
        • Lara-Villoslada F.
        • Sierra S.
        • Sempere L.
        • Gomez M.
        • Rodriguez J.M.
        • et al.
        Safety and tolerance of the human milk probiotic strain Lactobacillus salivarius CECT5713 in 6-month-old children.
        Nutrition. 2010; 26: 1082-1087
        • Sierra S.
        • Lara-Villoslada F.
        • Sempere L.
        • Olivares M.
        • Boza J.
        • Xaus J.
        Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults.
        Anaerobe. 2010; 16: 195-200
        • Svetoch E.A.
        • Eruslanov B.V.
        • Levchuk V.P.
        • Perelygin V.V.
        • Mitsevich E.V.
        • Mitsevich I.P.
        • et al.
        Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum.
        Appl Environ Microbiol. 2011; 77: 2749-2754
        • Perez-Cano F.J.
        • Dong H.
        • Yaqoob P.
        In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk.
        Immunobiology. 2010; 215: 996-1004
        • Zhang J.
        • Deng J.
        • Wang Z.
        • Che C.
        • Li Y.F.
        • Yang Q.
        Modulatory effects of Lactobacillus salivarius on intestinal mucosal immunity of piglets.
        Curr Microbiol. 2011; 62: 1623-1631
        • Larsen N.
        • Vogensen F.K.
        • van den Berg F.W.
        • Nielsen D.S.
        • Andreasen A.S.
        • Pedersen B.K.
        • et al.
        Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.
        PLoS One. 2010; 5: e9085
        • Ley R.E.
        • Turnbaugh P.J.
        • Klein S.
        • Gordon J.I.
        Microbial ecology: human gut microbes associated with obesity.
        Nature. 2006; 444: 1022-1023
        • Nadal I.
        • Santacruz A.
        • Marcos A.
        • Warnberg J.
        • Garagorri M.
        • Moreno L.A.
        • et al.
        Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents.
        Int J Obes. 2009; 33: 758-767
        • Santacruz A.
        • Marcos A.
        • Warnberg J.
        • Marti A.
        • Martin-Matillas M.
        • Campoy C.
        • et al.
        Interplay between weight loss and gut microbiota composition in overweight adolescents.
        Obesity. 2009; 17: 1906-1915
        • Daniel C.
        • Poiret S.
        • Goudercourt D.
        • Dennin V.
        • Leyer G.
        • Pot B.
        Selecting lactic acid bacteria for their safety and functionality by use of a mouse colitis model.
        Appl Environ Microbiol. 2006; 72: 5799-5805
        • Gøbel R.J.
        • Larsen N.
        • Jakobsen M.
        • Molgaard C.
        • Michaelsen K.F.
        Probiotics to obese adolescents; RCT examining the effects on inflammation and metabolic syndrome.
        J Pediatr Gastroenterol Nutr. 2012; 55: 673-678
        • Gøbel R.J.
        • Jensen S.M.
        • Frøkiær H.
        • Molgaard C.
        • Michaelsen K.F.
        Obesity, inflammation and metabolic syndrome in Danish adolescents.
        Acta Paediatr. 2012; 101: 192-200
        • Harrow S.A.
        • Ravindran V.
        • Butler R.C.
        • Marshall J.W.
        • Tannock G.W.
        Real-time quantitative PCR measurement of ileal Lactobacillus salivarius populations from broiler chickens to determine the influence of farming practices.
        Appl Environ Microbiol. 2007; 73: 7123-7127
        • Heilig H.G.H.J.
        • Zoetendal E.G.
        • Vaughan E.E.
        • Marteau P.
        • Akkermans A.D.L.
        • de Vos W.M.
        Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA.
        Appl Environ Microbiol. 2002; 68: 114-123
        • Makivuokko H.
        • Nurmi J.
        • Nurminen P.
        • Stowell J.
        • Rautonen N.
        In vitro effects on polydextrose by colonic bacteria and caco-2 cell cyclooxygenase gene expression.
        Nutr Cancer. 2005; 52: 94-104
        • Makivuokko H.
        • Forssten S.
        • Saarinen M.
        • Ouwehand A.C.
        • Rautonen N.
        Synbiotic effects of lactitol and Lactobacillus acidophilus NCFM™ in a semi-continuous colon fermentation model.
        J Beneficial Microbes. 2010; 1: 131-137
        • Matsuda K.
        • Tsuji H.
        • Asahara T.
        • Kado Y.
        • Nomoto K.
        Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR.
        Appl Environ Microbiol. 2007; 73: 32-39
        • Matsuki T.
        • Watanabe K.
        • Fujimoto J.
        • Takada T.
        • Tanaka R.
        Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces.
        Appl Environ Microbiol. 2004; 70: 7220-7228
        • Rinttila T.
        • Kassinen A.
        • Malinen E.
        • Krogius L.
        • Palva A.
        Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR.
        J Appl Microbiol. 2004; 97: 1166-1177
        • Song Y.
        • Liu C.
        • Finegold S.M.
        Real-time PCR quantitation of clostridia in feces of autistic children.
        Appl Environ Microbiol. 2004; 70: 6459-6465
        • Holben W.E.
        • Williams P.
        • Gilbert M.A.
        • Saarinen M.
        • Sarkilahti L.K.
        • Apajalahti J.H.
        Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon.
        Microb Ecol. 2002; 44: 175-185
        • Tiihonen K.
        • Ouwehand A.C.
        • Rautonen N.
        Effect of overweight on gastrointestinal microbiology and immunology: correlation with blood biomarkers.
        Br J Nutr. 2010; 103: 1070-1078
        • Klose V.
        • Bayer K.
        • Bruckbeck R.
        • Schatzmayr G.
        • Loibner A.P.
        In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens.
        Vet Microbiol. 2010; 144: 515-521
        • Valerio F.
        • de C.S.
        • Lonigro S.L.
        • Russo F.
        • Riezzo G.
        • Orlando A.
        • et al.
        Role of the probiotic strain Lactobacillus paracasei LMGP22043 carried by artichokes in influencing faecal bacteria and biochemical parameters in human subjects.
        J Appl Microbiol. 2011; 111: 155-164
        • Schwiertz A.
        • Taras D.
        • Schafer K.
        • Beijer S.
        • Bos N.A.
        • Donus C.
        • et al.
        Microbiota and SCFA in lean and overweight healthy subjects.
        Obesity (Silver Spring). 2010; 18: 190-195