Clinical application of probiotics in type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled study

Published:December 07, 2015DOI:https://doi.org/10.1016/j.clnu.2015.11.011

      Summary

      Background & aims

      Type 2 diabetes has been associated with dysbiosis and one of the possible routes to restore a healthy gut microbiota is by the regular ingestion of probiotics. We aimed to investigate the effects of probiotics on glycemic control, lipid profile, inflammation, oxidative stress and short chain fatty acids in T2D.

      Methods

      In a double-blind, randomized, placebo-controlled trial, 50 volunteers consumed daily 120 g/d of fermented milk for 6 wk. Participants were assigned into two groups: probiotic group, consuming fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis subsp lactis BB-12 (109 colony-forming units/d, each) and control group, consuming conventional fermented milk. Anthropometric measurements, body composition, fasting blood and faecal samples were taken at baseline and after 6 wk.

      Results

      45 subjects out of 50 (90%) completed follow-up. After 6 wk, there was a significant decrease in fructosamine levels (−9.91 mmol/L; p = 0.04) and hemoglobin A1c tended to be lower (−0.67%; p=0.06) in probiotic group. TNF-α and resistin were significantly reduced in probiotic and control groups (−1.5 and −1.3 pg/mL, −.1 and −2.8 ng/mL, respectively), while IL-10 was significantly reduced (− 0.65 pg/mL; p <0.001) only in the control group. Fecal acetic acid was increased in both groups (0.58 and 0.59% in probiotic and control groups, respectively; p <0.01). There was a significant difference between groups concerning mean changes of HbA1c (+0.31 for control group vs −0.65 for probiotic group; p=0.02), total cholesterol (+0.55 for control group vs −0.15 for probiotic group; p=0.04) and LDL-cholesterol (+0.36 for control group vs −0.20 for probiotic group p=0.03).

      Conclusions

      Probiotic consumption improved the glycemic control in T2D subjects, however, the intake of fermented milk seems to be involved with others metabolic changes, such as decrease in inflammatory cytokines (TNF-α and resistin) and increase in the acetic acid.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • IDF
        International Diabetes Federation IDF diabetes atlas. 6th ed. 2013
        • Kershaw E.E.
        • Flier J.S.
        Adipose tissue as an endocrine organ.
        J Clin Endocrinol Metab. 2004; 89: 2548-2556
        • Rani A.J.
        • Mythili S.V.
        Study on total antioxidant status in relation to oxidative stress in type 2 diabetes mellitus.
        J Clin Diagn Res. 2014; 8: 108-110
        • Muoio D.M.
        • Newgard C.B.
        Molecular and metabolic mechanisms of insulin resistance and [beta]-cell failure in type 2 diabetes.
        Nat Rev Mol Cell Biol. 2008; 9: 193-205
        • Hsieh F.-C.
        • Lee C.-L.
        • Chai C.-Y.
        • Chen W.-T.
        • Lu Y.-C.
        • Wu C.-S.
        Oral administration of Lactobacillus reuteri GMNL-263 improves insulin resistance and ameliorates hepatic steatosis in high fructose-fed rats.
        Nutr Metab. 2013; 10: 35
        • Wang S.
        • Zhu H.
        • Lu C.
        • Kang Z.
        • Luo Y.
        • Feng L.
        • et al.
        Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals.
        J Dairy Sci. 2012; 95: 4813-4822
        • Larsen N.
        • Vogensen F.K.
        • van den Berg F.W.J.
        • Nielsen D.S.
        • Andreasen A.S.
        • Pedersen B.K.
        • et al.
        Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.
        PLoS One. 2010; 5: e9085
        • Qin J.
        • Li Y.
        • Cai Z.
        • Li S.
        • Zhu J.
        • Zhang F.
        • et al.
        A metagenome-wide association study of gut microbiota in type 2 diabetes.
        Nature. 2012; 490: 55-60
        • Karlsson F.H.
        • Tremaroli V.
        • Nookaew I.
        • Bergstrom G.
        • Behre C.J.
        • Fagerberg B.
        • et al.
        Gut metagenome in European women with normal, impaired and diabetic glucose control.
        Nature. 2013; 498: 99-103
        • Cani P.D.
        • Amar J.
        • Iglesias M.A.
        • Poggi M.
        • Knauf C.
        • Bastelica D.
        • et al.
        Metabolic endotoxemia initiates obesity and insulin resistance.
        Diabetes. 2007; 56: 1761-1772
        • Cani P.D.
        • Lecourt E.
        • Dewulf E.M.
        • Sohet F.M.
        • Pachikian B.D.
        • Naslain D.
        • et al.
        Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal.
        Am J Clin Nutr. 2009; 90: 1236-1243
        • Psichas A.
        • Sleeth M.L.
        • Murphy K.G.
        • Brooks L.
        • Bewick G.A.
        • Hanyaloglu A.C.
        • et al.
        The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents.
        Int J Obes. 2014; 39: 424-429
        • Maynard C.L.
        • Elson C.O.
        • Hatton R.D.
        • Weaver C.T.
        Reciprocal interactions of the intestinal microbiota and immune system.
        Nature. 2012; 489: 231-241
        • Cani P.
        • Neyrinck A.
        • Fava F.
        • Knauf C.
        • Burcelin R.
        • Tuohy K.
        • et al.
        Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.
        Diabetologia. 2007; 50: 2374-2383
        • ADA
        American diabetes association. Standards of medical care in diabetes—2014.
        Diabetes Care. 2014; 37: S14-S80
        • Mazloom Z.
        • Yousefinejad A.
        • Dabbaghmanesh M.H.
        Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial.
        Iran J Med Sci. 2013; 38: 38-43
        • Buriti F.C.A.
        • Freitas S.C.
        • Egito A.S.
        • dos Santos KMO
        Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages.
        LWT Food Sci Technol. 2014; 59: 196-203
        • Peryam D.R.
        • Pilgrim F.J.
        Hedonic scale method of measuring food preferences.
        Food Technol. 1957; 11: 9-14
        • Geloneze B.
        • Repetto E.M.
        • Geloneze S.R.
        • Tambascia M.A.
        • Ermetice M.N.
        The threshold value for insulin resistance (HOMA-IR) in an admixtured population IR in the Brazilian metabolic syndrome study.
        Diabetes Res Clin Pract. 2006; 72: 219-220
        • Vignali D.A.A.
        Multiplexed particle-based flow cytometric assays.
        J Immunol Methods. 2000; 243: 243-255
        • Smiricky-Tjardes M.R.
        • Grieshop C.M.
        • Flickinger E.A.
        • Bauer L.L.
        • Fahey G.C.
        Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs.
        J Animal Sci. 2003; 81: 2535-2545
        • Gravitz L.
        Microbiome: the critters within.
        Nature. 2012; 485: 12-13
        • Tabuchi M.
        • Ozaki M.
        • Tamura A.
        • Yamada N.
        • Ishida T.
        • Hosoda M.
        • et al.
        Antidiabetic effect of lactobacillus GG in streptozotocin-induced diabetic rats.
        Biosci Biotechnol Biochem. 2003; 67: 1421-1424
        • Yadav H.
        • Jain S.
        • Sinha P.
        Antidiabetic effect of probiotic dahi containing lactobacillus acidophilus ans lactobacillus case I in high fructose fed rats.
        Nutr. 2007; 23: 62-68
        • Kang J.-H.
        • Yun S.-I.
        • Park M.-H.
        • Park J.-H.
        • Jeong S.-Y.
        • Park H.-O.
        Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice.
        PLoS One. 2013; 8: e54617
        • Ejtahed H.S.
        • Mohtadi-Nia J.
        • Homayouni-Rad A.
        • Niafar M.
        • Asghari-Jafarabadi M.
        • Mofid V.
        Probiotic yogurt improves antioxidant status in type 2 diabetic patients.
        Nutr Burbank Los Angel Cty Calif. 2012; 28: 539-543
        • Andreasen A.S.
        • Larsen N.
        • Pedersen-Skovsgaard T.
        • Berg R.M.G.
        • Møller K.
        • Svendsen K.D.
        • et al.
        Effects of Lactobacillus acidophilus NCFM on insulin sensitivity and the systemic inflammatory response in human subjects.
        Br J Nutr. 2010; 104: 1831-1838
        • Asemi Z.
        • Zare Z.
        • Shakeri H.
        • Sabihi S.
        • Esmaillzadeh A.
        Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes.
        Ann Nutr Metab. 2013; 63: 1-9
        • Asemi Z.
        • Khorrami-Rad A.
        • Alizadeh S.-A.
        • Shakeri H.
        • Esmaillzadeh A.
        Effects of synbiotic food consumption on metabolic status of diabetic patients: a double-blind randomized cross-over controlled clinical trial.
        Clin Nutr. 2014; 33: 198-203
        • Stephens J.W.
        • Khanolkar M.P.
        • Bain S.C.
        The biological relevance and measurement of plasma markers of oxidative stress in diabetes and cardiovascular disease.
        Atherosclerosis. 2009; 202: 321-329
        • Wang X.
        • Bao W.
        • Liu J.
        • OuYang Y.-Y.
        • Wang D.
        • Rong S.
        • et al.
        Inflammatory markers and risk of type 2 diabetes: a systematic review and meta-analysis.
        Diabetes Care. 2013; 36: 166-175
        • Tuttolomondo A.
        • La Placa S.
        • Di Raimondo D.
        • Bellia C.
        • Caruso A.
        • Lo Sasso B.
        • et al.
        Adiponectin, resistin and IL-6 plasma levels in subjects with diabetic foot and possible correlations with clinical variables and cardiovascular co-morbidity.
        Cardiovasc Diabetol. 2010; 9: 50
        • Fasshauer M.
        • Paschke R.
        Regulation of adipocytokines and insulin resistance.
        Diabetologia. 2003; 46: 1594-1603
        • Magrone T.
        • Jirillo E.
        The interaction between gut microbiota and age-related changes in immune function and inflammation.
        Immun Ageing. 2013; 10: 31
        • Matsuzaki T.
        • Yamazaki R.
        • Hashimoto S.
        • Yokokura T.
        Antidiabetic effects of an oral administration of lactobacillus case i in a non-insulin-dependent diabetes mellitus (NIDDM) model using KK-Ay mice.
        Endocr J. 1997; 44: 357-365
        • Martínez-Augustin O.
        • Rivero-Gutiérrez B.
        • Mascaraque C.
        • Sánchez de Medina F.
        Food derived bioactive peptides and intestinal barrier function.
        Int J Mol Sci. 2014; 15: 22857-22873
        • Marcone S.
        • Haughton K.
        • Simpson P.
        • Belton O.
        • Fitzgerald D.
        Milk-derived bioactive peptides inhibit human endothelial-monocyte interactions via PPAR-gamma dependent regulation of NF-kappaB.
        J Inflamm. 2015; 12: 1
        • Mohamadshahi M.
        • Veissi M.
        • Haidari F.
        • Shahbazian H.
        • Kaydani G.A.
        • Mohammadi F.
        Effects of probiotic yogurt consumption on inflammatory biomarkers in patients with type 2 diabetes.
        Bioimpacts. 2014; 4: 83-88
        • Kim S.-W.
        • Park K.-Y.
        • Kim B.
        • Kim E.
        • Hyun C.-K.
        Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production.
        Biochem Biophys Res Commun. 2013; 431: 258-263
        • De Vuyst L.
        • Leroy F.
        Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifdobacterial competitiveness, butyrate production, and gas production.
        Int J Food Microbiol. 2011; 149: 73-80
        • Tonucci L.B.
        • Santos K.M.O.
        • Ferreira C.L.L.F.
        • Ribeiro S.M.R.
        • Oliveira L.L.
        • Martino H.S.D.
        Gut microbiota and probiotics: focus on diabetes mellitus.
        Crit Rev Food Sci Nutr. 2015; https://doi.org/10.1080/10408398.2014.934438
        • Lin H.V.
        • Frassetto A.
        • Kowalik Jr., E.J.
        • Nawrocki A.R.
        • Lu M.M.
        • Kosinski J.R.
        • et al.
        Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms.
        PLoS One. 2012; 7: e35240
        • Kasubuchi M.
        • Hasegawa S.
        • Hiramatsu T.
        • Ichimura A.
        • Kimura I.
        Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation.
        Nutrients. 2015; 7: 2839-2849
        • Parkar S.G.
        • Trower T.M.
        • Stevenson D.E.
        Fecal microbial metabolism of polyphenols and its effects on human gut microbiota.
        Anaerobe. 2013; 23: 12-19
        • Ejtahed H.S.
        • Mohtadi-Nia J.
        • Homayouni-Rad A.
        • Niafar M.
        • Asghari-Jafarabadi M.
        • Mofid V.
        • et al.
        Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus.
        J Dairy Sci. 2011; 94: 3288-3294
        • Mohamadshahi M.
        • Veissi M.
        • Haidari F.
        • Javid A.Z.
        • Mohammadi F.
        • Shirbeigi E.
        Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients: a randomized controlled clinical trial.
        J Res Med Sci. 2014; 19: 531-536