Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress

Published:March 15, 2016DOI:


      • Chlorogenic acid decreased fibrogenesis degree, hydroxyproline contents and expression of profibrotic genes in liver.
      • Chlorogenic acid increased antioxidant capacity in liver through Nrf2 signaling pathway.
      • Chlorogenic acid alleviated PDGF induced profibrotic action via inhibition of NOX/ROS/MAPK signaling pathway.


      Liver fibrosis is a scaring process related to chronic liver injury of all causes and as yet no truly effective treatment is available. Chlorogenic acid (CGA) is a phenolic compound and exerts anti-inflammatory and anti-oxidant activities. Our former studies suggested that CGA could prevent CCl4-induced liver fibrosis through inhibition of inflammatory signaling pathway in rats. However, whether the anti-oxidant activity is involved in the anti-fibrotic effect of CGA on liver fibrosis is not yet fully understood. This study examined whether CGA may prevent CCl4-induced liver fibrosis by improving anti-oxidant capacity via activation of Nrf2 pathway and suppressing the PDGF-induced profibrotic action via inhibition of NOX/ROS/MAPK pathway. The studies in vivo showed that the liver fibrosis degree, hydroxyproline content and expression of α-SMA, Collagen Ⅰ, Collagen Ⅲ and TIMP-1 were increased in CCl4-injected rats and which were alleviated markedly by CGA. Furthermore, CGA significantly decreased CYP2E1 expression and increased the expression of nuclear Nrf2 and Nrf2-regulated anti-oxidant genes (HO-1, GCLC and NQO1). CGA decreased MDA level and increased GSH, SOD and CAT levels in liver tissues. In vitro studies PDGF could induce NOX subunits (p47phox and gp91phox) expression, ROS production, p38 and ERK1/2 phosphorylation, HSCs proliferation and profibrotic genes expression in HSCs, all of which were reduced by CGA treatment. In conclusion, the results suggest that CGA protects against CCl4-induced liver fibrosis, at least in part, through the suppression of oxidative stress in liver and hepatic stellate cells.

      Graphical abstract



      CGA (chlorogenic acid), HSCs (hepatic stellate cells), CCl4 (carbon tetrachloride), α-SMA (α-smooth muscle actin), ECM (extracellular matrix), ROS (reactive oxygen species), TIMP-1 (tissue inhibitor of metalloproteinase 1), NOX (NADPH oxidase), PDGF (platelet derived growth factor), CYP2E1 (cytochrome P450 2E1), Nrf2 (Nuclear factor erythroid-2-related factor 2), HO-1 (heme oxygenase-1), GCLC (glutamate-cysteine ligase Catalytic Subunit), NQO1 (NAD(P)H:quinone oxidoreductase-1), AREs (antioxidant response elements), MDA (malondialdehyde), GSH (glutathione), SOD (superoxide dismutase), CAT (catalase)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Mallat A.
        • Lotersztajn S.
        Cellular mechanisms of tissue fibrosis. 5. Novel insights into liver fibrosis.
        Am J Physiol Cell Physiol. 2013; 305: C789-C799
        • Schuppan D.
        • Kim Y.O.
        Evolving therapies for liver fibrosis.
        J Clin Invest. 2013; 123: 1887-1901
        • Lee Y.A.
        • Wallace M.C.
        • Friedman S.L.
        Pathobiology of liver fibrosis: a translational success story.
        Gut. 2015; 64: 830-841
        • Iwaisako K.
        • Brenner D.A.
        • Kisseleva T.
        What's new in liver fibrosis? the origin of myofibroblasts in liver fibrosis.
        J Gastroenterol Hepatol. 2012; 27: 65-68
        • Sanchez-Valle V.
        • Chavez-Tapia N.C.
        • Uribe M.
        • Mendez-Sanchez N.
        Role of oxidative stress and molecular changes in liver fibrosis: a review.
        Curr Med Chem. 2012; 19: 4850-4860
        • Cichoz-Lach H.
        • Michalak A.
        Oxidative stress as a crucial factor in liver diseases.
        World J Gastroenterol. 2014; 20: 8082-8091
        • Paik Y.H.
        • Kim J.
        • Aoyama T.
        • De Minicis S.
        • Bataller R.
        • Brenner D.A.
        Role of NADPH oxidases in liver fibrosis.
        Antioxid Redox Signal. 2014; 20: 2854-2872
        • Paik Y.H.
        • Iwaisako K.
        • Seki E.
        • Inokuchi S.
        • Schnabl B.
        • Osterreicher C.H.
        • et al.
        The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice.
        Hepatology. 2011; 53: 1730-1741
        • De Minicis S.
        • Seki E.
        • Paik Y.H.
        • Osterreicher C.H.
        • Kodama Y.
        • Kluwe J.
        • et al.
        Role and cellular source of nicotinamide adenine dinucleotide phosphate oxidase in hepatic fibrosis.
        Hepatology. 2010; 52: 1420-1430
        • Adachi T.
        • Togashi H.
        • Suzuki A.
        • Kasai S.
        • Ito J.
        • Sugahara K.
        • et al.
        NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells.
        Hepatology. 2005; 41: 1272-1281
        • Bataller R.
        • Schwabe R.F.
        • Choi Y.H.
        • Yang L.
        • Paik Y.H.
        • Lindquist J.
        • et al.
        NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis.
        J Clin Invest. 2003; 112: 1383-1394
        • De Minicis S.
        • Seki E.
        • Oesterreicher C.
        • Schnabl B.
        • Schwabe R.F.
        • Brenner D.A.
        Reduced nicotinamide adenine dinucleotide phosphate oxidase mediates fibrotic and inflammatory effects of leptin on hepatic stellate cells.
        Hepatology. 2008; 48: 2016-2026
        • Zhan S.S.
        • Jiang J.X.
        • Wu J.
        • Halsted C.
        • Friedman S.L.
        • Zern M.A.
        • et al.
        Phagocytosis of apoptotic bodies by hepatic stellate cells induces NADPH oxidase and is associated with liver fibrosis in vivo.
        Hepatology. 2006; 43: 435-443
        • Guimaraes E.L.
        • Empsen C.
        • Geerts A.
        • van Grunsven L.A.
        Advanced glycation end products induce production of reactive oxygen species via the activation of NADPH oxidase in murine hepatic stellate cells.
        J Hepatol. 2010; 52: 389-397
        • Pinzani M.
        • Gesualdo L.
        • Sabbah G.M.
        • Abboud H.E.
        Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells.
        J Clin Invest. 1989; 84: 1786-1793
        • Popov Y.
        • Schuppan D.
        Targeting liver fibrosis: strategies for development and validation of antifibrotic therapies.
        Hepatology. 2009; 50: 1294-1306
        • Zhu W.
        • Fung P.C.
        The roles played by crucial free radicals like lipid free radicals, nitric oxide, and enzymes NOS and NADPH in CCl(4)-induced acute liver injury of mice.
        Free Radic Biol Med. 2000; 29: 870-880
        • Chen S.
        • Zou L.
        • Li L.
        • Wu T.
        The protective effect of glycyrrhetinic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2.
        PLoS One. 2013; 8: e53662
        • Zhang Q.
        • Pi J.
        • Woods C.G.
        • Andersen M.E.
        A systems biology perspective on Nrf2-mediated antioxidant response.
        Toxicol Appl Pharmacol. 2010; 244: 84-97
        • Baird L.
        • Dinkova-Kostova A.T.
        The cytoprotective role of the Keap1-Nrf2 pathway.
        Arch Toxicol. 2011; 85: 241-272
        • Kaspar J.W.
        • Niture S.K.
        • Jaiswal A.K.
        Nrf2:INrf2 (Keap1) signaling in oxidative stress.
        Free Radic Biol Med. 2009; 47: 1304-1309
        • Ji L.
        • Jiang P.
        • Lu B.
        • Sheng Y.
        • Wang X.
        • Wang Z.
        Chlorogenic acid, a dietary polyphenol, protects acetaminophen-induced liver injury and its mechanism.
        J Nutr Biochem. 2013; 24: 1911-1919
        • Yun N.
        • Kang J.W.
        • Lee S.M.
        Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties.
        J Nutr Biochem. 2012; 23: 1249-1255
        • Ma Y.
        • Gao M.
        • Liu D.
        Chlorogenic acid improves high fat diet-induced hepatic steatosis and insulin resistance in mice.
        Pharm Res. 2015; 32: 1200-1209
        • Ruifeng G.
        • Yunhe F.
        • Zhengkai W.
        • Ershun Z.
        • Yimeng L.
        • Minjun Y.
        • et al.
        Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-kappaB signaling pathway.
        Eur J Pharmacol. 2014; 729: 54-58
        • Rakshit S.
        • Mandal L.
        • Pal B.C.
        • Bagchi J.
        • Biswas N.
        • Chaudhuri J.
        • et al.
        Involvement of ROS in chlorogenic acid-induced apoptosis of Bcr-Abl+ CML cells.
        Biochem Pharmacol. 2010; 80: 1662-1675
        • Cho A.S.
        • Jeon S.M.
        • Kim M.J.
        • Yeo J.
        • Seo K.I.
        • Choi M.S.
        • et al.
        Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice.
        Food Chem Toxicol. 2010; 48: 937-943
        • Lou Z.
        • Wang H.
        • Zhu S.
        • Ma C.
        • Wang Z.
        Antibacterial activity and mechanism of action of chlorogenic acid.
        J Food Sci. 2011; 76: M398-M403
        • Ong K.W.
        • Hsu A.
        • Tan B.K.
        Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation.
        Biochem Pharmacol. 2013; 85: 1341-1351
        • Feng R.
        • Lu Y.
        • Bowman L.L.
        • Qian Y.
        • Castranova V.
        • Ding M.
        Inhibition of activator protein-1, NF-kappaB, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid.
        J Biol Chem. 2005; 280: 27888-27895
        • Suzuki A.
        • Yamamoto N.
        • Jokura H.
        • Yamamoto M.
        • Fujii A.
        • Tokimitsu I.
        • et al.
        Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats.
        J Hypertens. 2006; 24: 1065-1073
        • Shi H.
        • Dong L.
        • Bai Y.
        • Zhao J.
        • Zhang Y.
        • Zhang L.
        Chlorogenic acid against carbon tetrachloride-induced liver fibrosis in rats.
        Eur J Pharmacol. 2009; 623: 119-124
        • Shi H.
        • Dong L.
        • Jiang J.
        • Zhao J.
        • Zhao G.
        • Dang X.
        • et al.
        Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway.
        Toxicology. 2013; 303: 107-114
        • Shi H.
        • Dong L.
        • Dang X.
        • Liu Y.
        • Jiang J.
        • Wang Y.
        • et al.
        Effect of chlorogenic acid on LPS-induced proinflammatory signaling in hepatic stellate cells.
        Inflamm Res. 2013; 62: 581-587
        • Vogel S.
        • Piantedosi R.
        • Frank J.
        • Lalazar A.
        • Rockey D.C.
        • Friedman S.L.
        • et al.
        An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro.
        J Lipid Res. 2000; 41: 882-893
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.
        Methods. 2001; 25: 402-408
        • Reczek C.R.
        • Chandel N.S.
        ROS-dependent signal transduction.
        Curr Opin Cell Biol. 2015; 33: 8-13
        • Ray P.D.
        • Huang B.W.
        • Tsuji Y.
        Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.
        Cell Signal. 2012; 24: 981-990
        • Samarakoon R.
        • Overstreet J.M.
        • Higgins P.J.
        TGF-beta signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities.
        Cell Signal. 2013; 25: 264-268
        • Parola M.
        • Robino G.
        Oxidative stress-related molecules and liver fibrosis.
        J Hepatol. 2001; 35: 297-306
        • Lushchak V.I.
        Free radicals, reactive oxygen species, oxidative stress and its classification.
        Chem Biol Interact. 2014; 224C: 164-175
        • Day B.J.
        Antioxidant therapeutics: pandora's box.
        Free Radic Biol Med. 2014; 66: 58-64
        • Dai N.
        • Zou Y.
        • Zhu L.
        • Wang H.F.
        • Dai M.G.
        Antioxidant properties of proanthocyanidins attenuate carbon tetrachloride (CCl4)-induced steatosis and liver injury in rats via CYP2E1 regulation.
        J Med Food. 2014; 17: 663-669
        • Singh S.
        • Vrishni S.
        • Singh B.K.
        • Rahman I.
        • Kakkar P.
        Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases.
        Free Radic Res. 2010; 44: 1267-1288
        • Shin S.M.
        • Yang J.H.
        • Ki S.H.
        Role of the Nrf2-ARE pathway in liver diseases.
        Oxid Med Cell Longev. 2013; 2013: 763257
        • Xu W.
        • Hellerbrand C.
        • Kohler U.A.
        • Bugnon P.
        • Kan Y.W.
        • Werner S.
        • et al.
        The Nrf2 transcription factor protects from toxin-induced liver injury and fibrosis.
        Lab Invest. 2008; 88: 1068-1078