Fatty acid and non-alcoholic fatty liver disease: Meta-analyses of case-control and randomized controlled trials

Published:January 14, 2017DOI:https://doi.org/10.1016/j.clnu.2017.01.003

      Summary

      Background and aims

      Blood and/or liver fatty acid contents of healthy subjects and non-alcoholic fatty liver disease (NAFLD) patients have shown inconsistent associations. In addition, the results of randomized controlled trials (RCTs) in relation to the effects of n-3 polyunsaturated fatty acid (PUFA) supplementation on alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver fat, triglyceride (TAG) and fasting glucose levels are inconsistent. The present study aimed to investigate the differences of fatty acid content in the blood and/or liver tissue between healthy subjects and NAFLD patients, and to quantify the benefits of n-3 PUFA therapy in NAFLD patients.

      Methods

      A systematic literature search was performed up to November 2016 using PubMed and Scopus databases. The differences of fatty acid content between cases and controls were calculated as weighted mean differences (WMD) by using a random-effects model. The intervention effects of RCTs were calculated as WMD for net changes in ALT, AST, liver fat, TAG and fasting glucose levels, respectively. Meta-regression with restricted maximum likelihood estimation was used to evaluate a potential linear relationship between confounding factors and effect sizes. Generalized least square was performed for dose-response analysis.

      Results

      Ten eligible case-control studies and 11 RCTs were included. The pooled estimates of case-control studies showed that blood and/or liver docosahexaenoic acid (DHA) content was significantly higher in the controls compared with cases. The pooled estimates of RCTs showed that n-3 PUFA supplementation significantly reduced the ALT (−7.53 U/L; 95% CI: −9.98, −5.08 U/L), ASL (−7.10 U/L, 95% CI: −11.67, −2.52 U/L) and TAG (−36.16 mg/dL, 95% CI: −49.15, −23.18 mg/dL) concentrations, and marginally reduced the liver fat content (−5.11%, 95% CI: −10.24, 0.02%, P = 0.051), but not fasting glucose. Dose-response analysis of RCTs showed that 1 g per day increment of eicosapentaenoic acid (EPA)+DHA was associated with a 3.14 U/L, 2.43 U/L, 2.74% and 9.97 mg/dL reduction in ALT (95% CI: −5.25, −1.02 U/L), AST (95% CI: −3.90, −0.90 U/L), liver fat (95% CI: −4.32, −1.16%) and TAG (95% CI: −14.47, −5.48 mg/dL) levels, respectively.

      Conclusions

      The present meta-analysis provides substantial evidence that n-3 PUFA supplementation, especially DHA, has a favorable effect in treatment of NAFLD.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ratziu V.
        • Bellentani S.
        • Cortez-Pinto H.
        • Day C.
        • Marchesini G.
        A position statement on NAFLD/NASH based on the EASL 2009 special conference.
        J Hepatol. 2010; 53: 372-384
        • Welsh J.A.
        • Karpen S.
        • Vos M.B.
        Increasing prevalence of nonalcoholic fatty liver disease among United States adolescents, 1988–1994 to 2007–2010.
        J Pediatr. 2013; 162 (e1): 496-500
        • Angulo P.
        Nonalcoholic fatty liver disease.
        New Engl J Med. 2002; 346: 1221-1231
        • Lazo M.
        • Clark J.M.
        The epidemiology of nonalcoholic fatty liver disease: a global perspective.
        Semin Liver Dis. 2008; : 339-350
        • Chitturi S.
        • Abeygunasekera S.
        • Farrell G.C.
        • Holmes-Walker J.
        • Hui J.M.
        • Fung C.
        • et al.
        NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome.
        Hepatology. 2002; 35: 373-379
        • Targher G.
        • Arcaro G.
        Non-alcoholic fatty liver disease and increased risk of cardiovascular disease.
        Atherosclerosis. 2007; 191: 235-240
        • Hamaguchi M.
        • Kojima T.
        • Takeda N.
        • Nagata C.
        • Takeda J.
        • Sarui H.
        • et al.
        Nonalcoholic fatty liver disease is a novel predictor of cardiovascular disease.
        World J Gastroenterol. 2007; 13: 1579
        • Dixon J.B.
        • Bhathal P.S.
        • Hughes N.R.
        • O'Brien P.E.
        Nonalcoholic fatty liver disease: improvement in liver histological analysis with weight loss.
        Hepatology. 2004; 39: 1647-1654
        • Promrat K.
        • Kleiner D.E.
        • Niemeier H.M.
        • Jackvony E.
        • Kearns M.
        • Wands J.R.
        • et al.
        Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis.
        Hepatology. 2010; 51: 121-129
        • St George A.
        • Bauman A.
        • Johnston A.
        • Farrell G.
        • Chey T.
        • George J.
        Effect of a lifestyle intervention in patients with abnormal liver enzymes and metabolic risk factors.
        J Gastroen Hepatol. 2009; 24: 399-407
        • Musso G.
        • Gambino R.
        • Cassader M.
        • Pagano G.
        A meta-analysis of randomized trials for the treatment of nonalcoholic fatty liver disease.
        Hepatology. 2010; 52: 79-104
        • Carpentier Y.A.
        • Portois L.
        • Malaisse W.J.
        n-3 Fatty acids and the metabolic syndrome.
        Am J Clin Nutr. 2006; 83: 1499S-1504S
        • Calder P.C.
        Mechanisms of action of (n-3) fatty acids.
        J Nutr. 2012; 142: 592S-599S
        • Lou D.J.
        • Zhu Q.Q.
        • Si X.W.
        • Guan L.L.
        • You Q.Y.
        • Yu Z.M.
        • et al.
        Serum phospholipid omega-3 polyunsaturated fatty acids and insulin resistance in type 2 diabetes mellitus and non-alcoholic fatty liver disease.
        J Diabetes Complicat. 2014; 28: 711-714
        • Zheng J.S.
        • Xu A.
        • Huang T.
        • Yu X.
        • Li D.
        Low docosahexaenoic acid content in plasma phospholipids is associated with increased non-alcoholic fatty liver disease in China.
        Lipids. 2012; 47: 549-556
        • Araya J.
        • Rodrigo R.
        • Videla L.A.
        • Thielemann L.
        • Orellana M.
        • Pettinelli P.
        • et al.
        Increase in long-chain polyunsaturated fatty acid n – 6/n – 3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease.
        Clin Sci. 2004; 106: 635-643
        • Elizondo A.
        • Araya J.
        • Rodrigo R.
        • Signorini C.
        • Sgherri C.
        • Comporti M.
        • et al.
        Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease.
        Biol Res. 2008; 41: 59-68
        • Kishino T.
        • Ohnishi H.
        • Ohtsuka K.
        • Matsushima S.
        • Urata T.
        • Watanebe K.
        • et al.
        Low concentrations of serum n-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease patients with liver injury.
        Clin Chem Lab Med. 2011; 49: 159-162
        • Pettinelli P.
        • Del Pozo T.
        • Araya J.
        • Rodrigo R.
        • Araya A.V.
        • Smok G.
        • et al.
        Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion.
        BBA-Mol Basis Dis. 2009; 1792: 1080-1086
        • Zhu Q.Q.
        • Lou D.J.
        • Si X.W.
        • Guan L.L.
        • You Q.Y.
        • Yu Z.M.
        • et al.
        Serum omega-3 polyunsaturated fatty acid and insulin resistance in type 2 diabetes mellitus and non-alcoholic fatty liver disease.
        Zhonghua nei ke za zhi. 2010; 49: 305-308
        • Parker H.M.
        • O'Connor H.T.
        • Keating S.E.
        • Cohn J.S.
        • Garg M.L.
        • Caterson I.D.
        • et al.
        Efficacy of the Omega-3 Index in predicting non-alcoholic fatty liver disease in overweight and obese adults: a pilot study.
        Br J Nutr. 2015; 114: 780-787
        • Spahis S.
        • Alvarez F.
        • Dubois J.
        • Ahmed N.
        • Peretti N.
        • Levy E.
        Plasma fatty acid composition in French-Canadian children with non-alcoholic fatty liver disease: effect of n-3 PUFA supplementation.
        Prostaglandins Leukot Essent Fatty Acids. 2015; 99: 25-34
        • Walle P.
        • Takkunen M.
        • Mannisto V.
        • Vaittinen M.
        • Lankinen M.
        • Karja V.
        • et al.
        Fatty acid metabolism is altered in non-alcoholic steatohepatitis independent of obesity.
        Metabolism. 2016; 65: 655-666
        • Argo C.K.
        • Patrie J.T.
        • Lackner C.
        • Henry T.D.
        • de Lange E.E.
        • Weltman A.L.
        • et al.
        Effects of n-3 fish oil on metabolic and histological parameters in NASH: a double-blind, randomized, placebo-controlled trial.
        J Hepatol. 2015; 62: 190-197
        • Capanni M.
        • Calella F.
        • Biagini M.R.
        • Genise S.
        • Raimondi L.
        • Bedogni G.
        • et al.
        Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study.
        Aliment Pharm Ther. 2006; 23: 1143-1151
        • Cussons A.J.
        • Watts G.F.
        • Mori T.A.
        • Stuckey B.G.
        Omega-3 fatty acid supplementation decreases liver fat content in polycystic ovary syndrome: a randomized controlled trial employing proton magnetic resonance spectroscopy.
        J Clin Endocr Metab. 2009; 94: 3842-3848
        • Dasarathy S.
        • Dasarathy J.
        • Khiyami A.
        • Yerian L.
        • Hawkins C.
        • Sargent R.
        • et al.
        Double-blind randomized placebo-controlled clinical trial of omega 3 fatty acids for the treatment of diabetic patients with nonalcoholic steatohepatitis.
        J Clin Gastroenterol. 2015; 49: 137-144
        • Janczyk W.
        • Lebensztejn D.
        • Wierzbicka-Rucinska A.
        • Mazur A.
        • Neuhoff-Murawska J.
        • Matusik P.
        • et al.
        Omega-3 Fatty acids therapy in children with nonalcoholic Fatty liver disease: a randomized controlled trial.
        J Pediatr. 2015; 166 (e1-3): 1358-1363
        • Li Y.H.
        • Yang L.H.
        • Sha K.H.
        • Liu T.G.
        • Zhang L.G.
        • Liu X.X.
        Efficacy of poly-unsaturated fatty acid therapy on patients with nonalcoholic steatohepatitis.
        World J Gastroenterol. 2015; 21: 7008-7013
        • Qin Y.
        • Zhou Y.
        • Chen S.H.
        • Zhao X.L.
        • Ran L.
        • Zeng X.L.
        • et al.
        Fish oil supplements lower serum lipids and glucose in correlation with a reduction in plasma fibroblast growth factor 21 and prostaglandin E2 in nonalcoholic fatty liver disease associated with hyperlipidemia: a randomized clinical trial.
        PloS One. 2015; 10: e0133496
        • Scorletti E.
        • Bhatia L.
        • McCormick K.G.
        • Clough G.F.
        • Nash K.
        • Hodson L.
        • et al.
        Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study.
        Hepatology. 2014; 60: 1211-1221
        • Sofi F.
        • Giangrandi I.
        • Cesari F.
        • Corsani I.
        • Abbate R.
        • Gensini G.F.
        • et al.
        Effects of a 1-year dietary intervention with n-3 polyunsaturated fatty acid-enriched olive oil on non-alcoholic fatty liver disease patients: a preliminary study.
        Int J Food Sci Nutr. 2010; 61: 792-802
        • Spadaro L.
        • Magliocco O.
        • Spampinato D.
        • Piro S.
        • Oliveri C.
        • Alagona C.
        • et al.
        Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease.
        Dig Liver Dis. 2008; 40: 194-199
        • Chen R.
        • Guo Q.
        • Zhu W.J.
        • Xie Q.
        • Wang H.
        • Cai W.
        Therapeutic efficacy of ω-3 polyunsaturated fatty acid capsule in treatment of patients with non-alcoholic fatty liver disease.
        World Chin J Digestol. 2008; 16: 2002-2006
        • Parker H.M.
        • Johnson N.A.
        • Burdon C.A.
        • Cohn J.S.
        • O'Connor H.T.
        • George J.
        Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis.
        J Hepatol. 2012; 56: 944-951
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        Ann Intern Med. 2009; 151: 264-269
        • Higgins J.P.
        • Green S.
        Cochrane handbook for systematic reviews of interventions.
        Wiley Online Library, 2008
        • Moher D.
        • Jones A.
        • Cook D.J.
        • Jadad A.R.
        • Moher M.
        • Tugwell P.
        • et al.
        Does quality of reports of randomised trials affect estimates of intervention efficacy reported in meta-analyses?.
        Lancet. 1998; 352: 609-613
        • DerSimonian R.
        • Laird N.
        Meta-analysis in clinical trials.
        Control Clin Trials. 1986; 7: 177-188
        • Harbord R.M.
        • Higgins J.
        Meta-regression in Stata.
        Meta. 2008; 8: 493-519
        • Orsini N.
        • Bellocco R.
        • Greenland S.
        Generalized least squares for trend estimation of summarized dose-response data.
        Stata J. 2006; 6: 40
        • Egger M.
        • Smith G.D.
        • Schneider M.
        • Minder C.
        Bias in meta-analysis detected by a simple, graphical test.
        BMJ. 1997; 315: 629-634
        • Miller E.
        • Kaur G.
        • Larsen A.
        • Loh S.P.
        • Linderborg K.
        • Weisinger H.S.
        • et al.
        A short-term n-3 DPA supplementation study in humans.
        Eur J Nutr. 2013; 52: 895-904
        • Zhu F.-S.
        • Liu S.
        • Chen X.-M.
        • Huang Z.-G.
        • Zhang D.-W.
        Effects of n-3 polyunsaturated fatty acids from seal oils on nonalcoholic fatty liver disease associated with hyperlipidemia.
        World J Gastroenterol. 2008; 14: 6395-6400
        • Kim E.H.
        • Bae J.S.
        • Hahm K.B.
        • Cha J.Y.
        Endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 mice ameliorate high-fat diet-induced non-alcoholic fatty liver disease.
        Biochem Pharmacol. 2012; 84: 1359-1365
        • Buzzetti E.
        • Pinzani M.
        • Tsochatzis E.A.
        The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD).
        Metabolism. 2016; 65: 1038-1048
        • Scorletti E.
        • Byrne C.D.
        Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease.
        Annu Rev Nutr. 2013; 33: 231-248
        • Cusi K.
        Role of insulin resistance and lipotoxicity in non-alcoholic steatohepatitis.
        Clin Liver Dis. 2009; 13: 545-563
        • Peverill W.
        • Powell L.W.
        • Skoien R.
        Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation.
        Int J Mol Sci. 2014; 15: 8591-8638
        • Musso G.
        • Gambino R.
        • Cassader M.
        Recent insights into hepatic lipid metabolism non-alcoholic fatty liver disease (NAFLD).
        Prog Lipid Res. 2009; 48: 1-26
        • Takeuchi Y.
        • Yahagi N.
        • Izumida Y.
        • Nishi M.
        • Kubota M.
        • Teraoka Y.
        • et al.
        Polyunsaturated fatty acids selectively suppress sterol regulatory element-binding protein-1 through proteolytic processing and autoloop regulatory circuit.
        J Biol Chem. 2010; 285: 11681-11691
        • Deng X.
        • Dong Q.
        • Bridges D.
        • Raghow R.
        • Park E.A.
        • Elam M.B.
        Docosahexaenoic acid inhibits proteolytic processing of sterol regulatory element-binding protein-1c (SREBP-1c) via activation of AMP-activated kinase.
        BBA-Mol Cell Biol L. 2015; 1851: 1521-1529
        • Lorente-Cebrián S.
        • Bustos M.
        • Marti A.
        • Martinez J.A.
        • Moreno-Aliaga M.J.
        Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes.
        Clin Sci. 2009; 117: 243-249
        • Salem Jr., N.
        • Litman B.
        • Kim H.-Y.
        • Gawrisch K.
        Mechanisms of action of docosahexaenoic acid in the nervous system.
        Lipids. 2001; 36: 945-959
        • Bugianesi E.
        • McCullough A.J.
        • Marchesini G.
        Insulin resistance: a metabolic pathway to chronic liver disease.
        Hepatology. 2005; 42: 987-1000
        • Fickova M.
        • Hubert P.
        • Klimes I.
        • Staedel C.
        • Cremel G.
        • Bohov P.
        • et al.
        Dietary fish oil and olive oil improve the liver insulin receptor tyrosine kinase activity in high sucrose fed rats.
        Endocr Regul. 1994; 28: 187-197
        • Gormaz J.G.
        • Rodrigo R.
        • Videla L.A.
        • Beems M.
        Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease.
        Prog Lipid Res. 2010; 49: 407-419
        • Wellen K.E.
        • Hotamisligil G.S.
        Obesity-induced inflammatory changes in adipose tissue.
        J Clin Invest. 2003; 112: 1785
        • Du Plessis J.
        • van Pelt J.
        • Korf H.
        • Mathieu C.
        • Van Der Schueren B.
        • Lannoo M.
        • et al.
        Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease.
        Gastroenterology. 2015; 149 (e14): 635-648
        • Neschen S.
        • Morino K.
        • Rossbacher J.C.
        • Pongratz R.L.
        • Cline G.W.
        • Sono S.
        • et al.
        Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-γ-dependent mechanism in mice.
        Diabetes. 2006; 55: 924-928
        • Polyzos S.A.
        • Toulis K.A.
        • Goulis D.G.
        • Zavos C.
        • Kountouras J.
        Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis.
        Metabolism. 2011; 60: 313-326
        • Puglisi M.J.
        • Hasty A.H.
        • Saraswathi V.
        The role of adipose tissue in mediating the beneficial effects of dietary fish oil.
        J Nutr Biochem. 2011; 22: 101-108
        • Le H.D.
        • Meisel J.A.
        • de Meijer V.E.
        • Gura K.M.
        • Puder M.
        The essentiality of arachidonic acid and docosahexaenoic acid.
        Prostaglandins Leukot Essent Fatty Acids. 2009; 81: 165-170