Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study

Published:March 23, 2017DOI:https://doi.org/10.1016/j.clnu.2017.03.015


      Background & aims

      Legumes, a low-energy, nutrient-dense and low glycemic index food, have shown beneficial effects on glycemic control and adiposity. As such, legumes are widely recommended in diabetic diets, even though there is little evidence that their consumption protects against type 2 diabetes. Therefore the aim of the present study was to examine the associations between consumption of total legumes and specific subtypes, and type 2 diabetes risk. We also investigated the effect of theoretically substituting legumes for other protein- or carbohydrate-rich foods.


      Prospective assessment of 3349 participants in the PREvención con DIeta MEDiterránea (PREDIMED) study without type 2 diabetes at baseline. Dietary information was assessed at baseline and yearly during follow-up. We used Cox regression models to estimate hazard ratios (HRs) and 95% confidence intervals (95% CIs) for type-2 diabetes incidence according to quartiles of cumulative average consumption of total legumes, lentils, chickpeas, dry beans and fresh peas.


      During a median follow-up of 4.3 years, 266 new cases of type 2 diabetes occurred. Individuals in the highest quartile of total legume and lentil consumption had a lower risk of diabetes than those in the lowest quartile (HR: 0.65; 95% CI: 0.43, 0.96; P-trend = 0.04; and HR: 0.67; 95% CI: 0.46–0.98; P-trend = 0.05, respectively). A borderline significant association was also observed for chickpeas consumption (HR 0.68; 95% CI: 0.46, 1.00; P-trend = 0.06). Substitutions of half a serving/day of legumes for similar servings of eggs, bread, rice or baked potato was associated with lower risk of diabetes incidence.


      A frequent consumption of legumes, particularly lentils, in the context of a Mediterranean diet, may provide benefits on type 2 diabetes prevention in older adults at high cardiovascular risk.

      Trial registration

      The trial is registered at http://www.controlled-trials.com (ISRCTN35739639). Registration date: 5th October 2005.


      Abbreviations used:

      IDF (International Diabetes Federation), CVD (cardiovascular disease), MedDiet (Mediterranean diet), PREDIMED (PREvención con DIeta MEDiterránea), FFQ (Food Frequency Questionnaire), ICC (intraclass correlation coefficient), HRs (hazard ratios), Cis (Confidence intervals), METs (metabolic equivalent task)
      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • International Diabetes Federation
        IDF diabetes.
        7 ed. International Diabetes Federation, Brussels, Belgium2015
        • American Diabetes Association AD
        • Association AD
        • Li R.
        • Zhang P.
        • Barker L.
        • Chowdhury F.
        • et al.
        Standards of medical care in diabetes–2013.
        Diabetes Care. 2013; 36: S11-S66https://doi.org/10.2337/dc13-S011
        • Ley S.H.
        • Ardisson Korat A.V.
        • Sun Q.
        • Tobias D.K.
        • Zhang C.
        • Qi L.
        • et al.
        Contribution of the nurses' health studies to uncovering risk factors for type 2 diabetes: diet, lifestyle, biomarkers, and genetics.
        Am J Public Health. 2016; 106: 1624-1630https://doi.org/10.2105/AJPH.2016.303314
        • McCrory M.A.
        • Hamaker B.R.
        • Lovejoy J.C.
        • Eichelsdoerfer P.E.
        Pulse consumption, satiety, and weight management.
        Adv Nutr An Int Rev J. 2010; 1: 17-30https://doi.org/10.3945/an.110.1006
        • Atkinson F.S.
        • Foster-Powell K.
        • Brand-Miller J.C.
        International tables of glycemic index and glycemic load values: 2008.
        Diabetes Care. 2008; 31: 2281-2283https://doi.org/10.2337/dc08-1239
        • Rebello C.J.
        • Greenway F.L.
        • Finley J.W.
        A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities.
        Obes Rev. 2014; 15: 392-407https://doi.org/10.1111/obr.12144
        • Mann J.I.
        • De Leeuw I.
        • Hermansen K.
        • Karamanos B.
        • Karlström B.
        • Katsilambros N.
        • et al.
        Evidence-based nutritional approaches to the treatment and prevention of diabetes mellitus.
        Nutr Metab Cardiovasc Dis. 2004; 14: 373-394
        • American Diabetes Association
        • Bantle J.P.
        • Wylie-Rosett J.
        • Albright A.L.
        • Apovian C.M.
        • Clark N.G.
        • et al.
        Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association.
        Diabetes Care. 2008; 31: S61-S78https://doi.org/10.2337/dc08-S061
        • Fung T.T.
        • Schulze M.
        • Manson J.E.
        • Willett W.C.
        • Hu F.B.
        Dietary patterns, meat intake, and the risk of type 2 diabetes in women.
        Arch Intern Med. 2004; 164: 2235-2240https://doi.org/10.1001/archinte.164.20.2235
        • Salas-Salvadó J.
        • Bulló M.
        • Estruch R.
        • Ros E.
        • Covas M.-I.
        • Ibarrola-Jurado N.
        • et al.
        Prevention of diabetes with Mediterranean diets: a subgroup analysis of a randomized trial.
        Ann Intern Med. 2014; 160: 1-10https://doi.org/10.7326/M13-1725
        • Kim S.J.
        • de Souza R.J.
        • Choo V.L.
        • Ha V.
        • Cozma A.I.
        • Chiavaroli L.
        • et al.
        Effects of dietary pulse consumption on body weight: a systematic review and meta-analysis of randomized controlled trials.
        Am J Clin Nutr. 2016; 103: 1213-1223https://doi.org/10.3945/ajcn.115.124677
        • Mollard R.C.
        • Luhovyy B.L.
        • Panahi S.
        • Nunez M.
        • Hanley A.
        • Anderson G.H.
        Regular consumption of pulses for 8 weeks reduces metabolic syndrome risk factors in overweight and obese adults.
        Br J Nutr. 2012; : S111-S122https://doi.org/10.1017/S0007114512000712
        • Mattei J.
        • Hu F.B.
        • Campos H.
        A higher ratio of beans to white rice is associated with lower cardiometabolic risk factors in Costa Rican adults.
        Am J Clin Nutr. 2011; 94: 869-876https://doi.org/10.3945/ajcn.111.013219
        • Papanikolaou Y.
        • Fulgoni V.L.
        Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the National Health and Nutrition Examination Survey 1999-2002.
        J Am Coll Nutr. 2008; 27: 569-576
        • Hosseinpour-Niazi S.
        • Mirmiran P.
        • Fallah-Ghohroudi A.
        • Azizi F.
        Non-soya legume-based therapeutic lifestyle change diet reduces inflammatory status in diabetic patients: a randomised cross-over clinical trial.
        Br J Nutr. 2015; 114: 213-219https://doi.org/10.1017/S0007114515001725
        • Hosseinpour-Niazi S.
        • Mirmiran P.
        • Hedayati M.
        • Azizi F.
        Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: a cross-over randomized clinical trial.
        Eur J Clin Nutr. 2015; 69: 592-597https://doi.org/10.1038/ejcn.2014.228
        • Agrawal S.
        • Ebrahim S.
        Association between legume intake and self-reported diabetes among adult men and women in India.
        BMC Public Health. 2013; 13: 706https://doi.org/10.1186/1471-2458-13-706
        • Dhillon P.K.
        • Bowen L.
        • Kinra S.
        • Bharathi A.V.
        • Agrawal S.
        • Prabhakaran D.
        • et al.
        Legume consumption and its association with fasting glucose, insulin resistance and type 2 diabetes in the Indian Migration Study.
        Public Health Nutr. 2016; : 1-10https://doi.org/10.1017/S1368980016001233
        • Meyer K.A.
        • Kushi L.H.
        • Jacobs D.R.
        • Slavin J.
        • Sellers T.A.
        • Folsom A.R.
        Carbohydrates, dietary fiber, and incident type 2 diabetes in older women.
        Am J Clin Nutr. 2000; 71: 921-930
        • Liu S.
        • Serdula M.
        • Janket S.-J.
        • Cook N.R.
        • Sesso H.D.
        • Willett W.C.
        • et al.
        A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women.
        Diabetes Care. 2004; 27: 2993-2996
        • Ericson U.
        • Sonestedt E.
        • Gullberg B.
        • Hellstrand S.
        • Hindy G.
        • Wirfält E.
        • et al.
        High intakes of protein and processed meat associate with increased incidence of type 2 diabetes.
        Br J Nutr. 2013; 109: 1143-1153https://doi.org/10.1017/S0007114512003017
        • Villegas R.
        • Gao Y.-T.
        • Yang G.
        • Li H.-L.
        • Elasy T.A.
        • Zheng W.
        • et al.
        Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women's Health Study.
        Am J Clin Nutr. 2008; 87: 162-167
        • Bazzano L.A.
        • Li T.Y.
        • Joshipura K.J.
        • Hu F.B.
        Intake of fruit, vegetables, and fruit juices and risk of diabetes in women.
        Diabetes Care. 2008; 31
        • Martínez-González M.Á.
        • Corella D.
        • Salas-Salvadó J.
        • Ros E.
        • Covas M.I.
        • Fiol M.
        • et al.
        Cohort profile: design and methods of the PREDIMED study.
        Int J Epidemiol. 2012; 41: 377-385https://doi.org/10.1093/ije/dyq250
        • Estruch R.
        • Ros E.
        • Salas-Salvadó J.
        • Covas M.-I.
        • Corella D.
        • Arós F.
        • et al.
        Primary prevention of cardiovascular disease with a Mediterranean diet.
        N Engl J Med. 2013; 368: 1279-1290https://doi.org/10.1056/NEJMoa1200303
        • Willett W.
        Nutritional epidemiology.
        2nd ed. Oxford University Press New York, 1998: 288-322
        • Fernández-Ballart J.D.
        • Piñol J.L.
        • Zazpe I.
        • Corella D.
        • Carrasco P.
        • Toledo E.
        • et al.
        Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain.
        Br J Nutr. 2010; 103: 1808-1816https://doi.org/10.1017/S0007114509993837
        • Moreiras O.
        • Carvajal A.
        • Cabrera L.
        • Cuadrado C.
        Tablas de composición de alimentos“ Food Composition Tables” Pirámide.
        2005 (Madrid, Spain)
        • Mataix J.
        Tablas de composición de alimentos.
        Universidad de Granada, Granada2003 (Food Compos Tables)
        • Elosua R.
        • Marrugat J.
        • Molina L.
        • Pons S.
        • Pujol E.
        Validation of the Minnesota leisure time physical activity questionnaire in Spanish men. The MARATHOM investigators.
        Am J Epidemiol. 1994; 139: 1197-1209
        • Schröder H.
        • Fitó M.
        • Estruch R.
        • Martínez-González M.A.
        • Corella D.
        • Salas-Salvadó J.
        • et al.
        A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women.
        J Nutr. 2011; 141: 1140-1145https://doi.org/10.3945/jn.110.135566
      1. Diagnosis and classification of diabetes mellitus.
        Diabetes Care. 2008; 31: S55-S60https://doi.org/10.2337/dc08-S055
        • Hu F.B.
        • Stampfer M.J.
        • Rimm E.
        • Ascherio A.
        • Rosner B.A.
        • Spiegelman D.
        • et al.
        Dietary fat and coronary heart disease: a comparison of approaches for adjusting for total energy intake and modeling repeated dietary measurements.
        Am J Epidemiol. 1999; 149: 531-540
        • Bernstein A.M.
        • Rosner B.A.
        • Willett W.C.
        Cereal fiber and coronary heart disease: a comparison of modeling approaches for repeated dietary measurements, intermediate outcomes, and long follow-up.
        Eur J Epidemiol. 2011; 26: 877-886https://doi.org/10.1007/s10654-011-9626-x
        • Ros E.
        • Hu F.B.
        Consumption of plant seeds and cardiovascular health: epidemiological and clinical trial evidence.
        Circulation. 2013; 128: 553-565https://doi.org/10.1161/CIRCULATIONAHA.112.001119
        • Malik V.S.
        • Li Y.
        • Tobias D.K.
        • Pan A.
        • Hu F.B.
        Dietary protein intake and risk of type 2 diabetes in US men and women.
        Am J Epidemiol. 2016; 183: 715-728https://doi.org/10.1093/aje/kwv268
        • Pittas A.G.
        • Lau J.
        • Hu F.B.
        • Dawson-Hughes B.
        The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis.
        J Clin Endocrinol Metab. 2007; 92: 2017-2029https://doi.org/10.1210/jc.2007-0298
        • Chatterjee R.
        • Yeh H.-C.
        • Edelman D.
        • Brancati F.
        Potassium and risk of Type 2 diabetes.
        Expert Rev Endocrinol Metab. 2011; 6: 665-672https://doi.org/10.1586/eem.11.60
        • Dong J.-Y.
        • Xun P.
        • He K.
        • Qin L.-Q.
        Magnesium intake and risk of type 2 diabetes: meta-analysis of prospective cohort studies.
        Diabetes Care. 2011; 34: 2116-2122https://doi.org/10.2337/dc11-0518
        • Campos-Vega R.
        • Loarca-Piña G.
        Minor components of pulses and their potential impact on human health.
        Food Res Int. 2010; 43: 461-482https://doi.org/10.1016/j.foodres.2009.09.004
        • Liu Y.-J.
        • Zhan J.
        • Liu X.-L.
        • Wang Y.
        • Ji J.
        • He Q.-Q.
        Dietary flavonoids intake and risk of type 2 diabetes: a meta-analysis of prospective cohort studies.
        Clin Nutr. 2014; 33: 59-63https://doi.org/10.1016/j.clnu.2013.03.011
        • Willis H.J.
        • Eldridge A.L.
        • Beiseigel J.
        • Thomas W.
        • Slavin J.L.
        Greater satiety response with resistant starch and corn bran in human subjects.
        Nutr Res. 2009; 29: 100-105https://doi.org/10.1016/j.nutres.2009.01.004
        • Howarth N.C.
        • Saltzman E.
        • Roberts S.B.
        Dietary fiber and weight regulation.
        Nutr Rev. 2001; 59: 129-139https://doi.org/10.1111/j.1753-4887.2001.tb07001.x
        • Behall K.M.
        • Scholfield D.J.
        • Hallfrisch J.G.
        • Liljeberg-Elmståhl H.G.M.
        Consumption of both resistant starch and beta-glucan improves postprandial plasma glucose and insulin in women.
        Diabetes Care. 2006; 29: 976-981https://doi.org/10.2337/diacare.295976
        • InterAct Consortium
        Dietary fibre and incidence of type 2 diabetes in eight European countries: the EPIC-InterAct Study and a meta-analysis of prospective studies.
        Diabetologia. 2015; 58: 1394-1408https://doi.org/10.1007/s00125-015-3585-9
        • Sievenpiper J.L.
        • Kendall C.W.C.
        • Esfahani A.
        • Wong J.M.W.
        • Carleton A.J.
        • Jiang H.Y.
        • et al.
        Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes.
        Diabetologia. 2009; 52: 1479-1495https://doi.org/10.1007/s00125-009-1395-7
        • Bhupathiraju S.N.
        • Tobias D.K.
        • Malik V.S.
        • Pan A.
        • Hruby A.
        • Manson J.E.
        • et al.
        Glycemic index, glycemic load, and risk of type 2 diabetes: results from 3 large US cohorts and an updated meta-analysis.
        Am J Clin Nutr. 2014; 100: 218-232https://doi.org/10.3945/ajcn.113.079533
        • Hodge A.M.
        • English D.R.
        • O'Dea K.
        • Giles G.G.
        Glycemic index and dietary fiber and the risk of type 2 diabetes.
        Diabetes Care. 2004; 27
        • Kalogeropoulos N.
        • Chiou A.
        • Ioannou M.
        • Karathanos V.T.
        • Hassapidou M.
        • Andrikopoulos N.K.
        Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries.
        Food Chem. 2010; 121: 682-690https://doi.org/10.1016/j.foodchem.2010.01.005
        • Venn B.J.
        • Mann J.I.
        Cereal grains, legumes and diabetes.
        Eur J Clin Nutr Publ. 2004; 58: 1443https://doi.org/10.1038/SJ.EJCN.1601995