Potential therapeutic impact of omega-3 long chain-polyunsaturated fatty acids on inflammation markers in Duchenne muscular dystrophy: A double-blind, controlled randomized trial

Published:September 23, 2017DOI:https://doi.org/10.1016/j.clnu.2017.09.011

      Summary

      Background & aims

      Duchenne Muscular Dystrophy (DMD) is the most frequent dystrophy in childhood generated by a deficiency in dystrophin. DMD is a neuromuscular disease and its clinical course comprises chronic inflammation and gradual muscle weakness. Supplementation of omega-3 long chain-Polyunsaturated Fatty Acids (ω-3 long chain-PUFA) reduces inflammatory markers in various disorders. The goal of this research was to analyze the influence of ω-3 long chain-PUFA intake on gene expression and blood inflammatory markers in boys with DMD.

      Methods

      In a placebo-controlled, double. Blind, randomized trial, boys with DMD (n = 36) consumed 2.9 g/day of ω-3 long chain-PUFA or sunflower oil as control, in capsules, for a period of 6 months. Blood was analyzed at baseline and at months 1, 2, 3, and 6 of supplementation for expression of inflammatory markers in leukocytes and serum.

      Results

      There was high adherence to capsule intake (control: 95.3% ± 7.2%, and ω-3 long chain-PUFA: 97.4% ± 3.7% at month 6). Enrichment of EicosaPentaenoic Acid (EPA) and DocosaHexaenoic Acid (DHA) in erythrocytes increased significantly in patients supplemented with ω-3 long chain-PUFA compared with the placebo group during the 6 months of supplementation. Messenger RNA (mRNA) of the Nuclear Factor kappa beta (NF-κB) and its target genes InterLeukin 1 beta (IL-1β) and IL-6 was downregulated significantly (p < 0.05) in leukocytes from DMD boys supplemented with ω-3 long chain-PUFA for 6 months, compared to the placebo group. Omega-3 long chain-PUFA intake decreased the serum IL-1β (−59.5%; p = 0.011) and IL-6 (−54.8%; p = 0.041), and increased the serum IL-10 (99.9%, p < 0.005), in relation to those with placebo treatment.

      Conclusion

      Supplementation with ω-3 long chain-PUFA 2.9 g/day is well-tolerated, has a beneficial reductive effect on proinflammatory markers, and increases an anti-inflammatory marker, indicating that ω-3 long chain-PUFA could have a potential therapeutic impact on chronic inflammation in DMD. This research is registered at clinicaltrials.gov (NCT018264229).

      Keywords

      Abbreviations:

      DMD (Duchenne muscular dystrophy), ω-3 long chain-PUFA (omega-3 long chain-polyunsaturated fatty acids), EPA (EicosaPentaenoic Acid-20:5ω3), DHA (DocosaHexaenoic Acid-22:6ω3), CK (creatine kinase), NF-kB (nuclear factor kappa beta), TNF-α (tumor necrosis factor alpha), IL (InterLeukin)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Straub V.
        • Campbell K.P.
        Muscular dystrophies and the dystrophin-glycoprotein complex.
        Curr Opin Neurol. 1997; 10: 168-175
        • Berchtold M.W.
        • Brinkmeier H.
        • Müntener M.
        Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease.
        Physiol Rev. 2000; 80: 1215-1265
        • Tidball J.G.
        Inflammatory processes in muscle injury and repair.
        Am J Physiol Regul Integr Comp Physiol. 2005; 288: R345-R353
        • Collins R.A.
        • Grounds M.D.
        The role of tumor necrosis factor-alpha (TNF-α) in skeletal muscle regeneration: studies in TNF-α (−/−) and TNF-α (−/−)/LT-a (−/−) mice.
        J Histochem Cytochem. 2001; 49: 989-1001
        • De Paepe B.
        • De Bleecker J.L.
        Cytokines and chemokines as regulators of skeletal muscle inflammation: presenting the case of Duchenne muscular dystrophy.
        Mediat Inflamm. 2013; 2013: 540370
        • Saito K.
        • Kobayashi D.
        • Komatsu M.
        • Yajima T.
        • Yagihashi A.
        • Ishikawa Y.
        • et al.
        A sensitive assay of tumor necrosis factor α in sera from Duchenne muscular dystrophy patients.
        Clin Chem. 2000; 46: 1703-1704
        • Comim C.M.
        • Mathia G.B.
        • Hoepers A.
        • Tuon L.
        • Kapczinski F.
        • Dal-Pizzol F.
        • et al.
        Neurotrophins, cytokines, oxidative parameters and functionality in progressive muscular dystrophies.
        An Acad Bras Cienc. 2015; 87: 1809-1818
        • Cruz-Guzmán O.R.
        • Rodríguez-Cruz M.
        • Escobar Cedillo R.E.
        Systemic inflammation in Duchenne muscular dystrophy: association with muscle function and nutritional status.
        BioMed Res Int. 2015; 2015 (1–7)891972
        • Davidson Z.E.
        • Ryan M.M.
        • Kornberg A.J.
        • Sinclair K.
        • Cairns A.
        • Walker K.Z.
        • et al.
        Observations of body mass index in Duchenne muscular dystrophy: a longitudinal study.
        Eur J Clin Nutr. 2014; 68: 892-897
        • Rodríguez-Cruz M.
        • Sánchez R.
        • Escobar R.E.
        • Cruz-Guzmán O.D.R.
        • López-Alarcón M.
        • Bernabé-García M.
        • et al.
        Evidence of insulin resistance and other metabolic alterations in boys with Duchenne or Becker muscular dystrophy.
        Int J Endocrinol. 2014; 867273
        • Park H.S.
        • Park J.Y.
        • Yu R.
        Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-α and IL-6.
        Diabetes Res Clin Pract. 2005; 69: 29-35
        • Moon Y.S.
        • Kim D.H.
        • Song D.K.
        Serum tumor necrosis factor-α levels and components of the metabolic syndrome in obese adolescents.
        Metabolism. 2004; 53: 863867
        • Schwarzenberg S.J.
        • Sinaiko A.R.
        Obesity and inflammation in children.
        Paediatr Respir Rev. 2006; 7: 239-246
        • Wehling-Henricks M.
        • Lee J.J.
        • Tidball J.G.
        Prednisolone decreases cellular adhesion molecules required for inflammatory cell infiltration in dystrophin-deficient skeletal muscle.
        Neuromusc Disord. 2004; 14: 483-490
        • Biggar W.D.
        Duchenne muscular dystrophy.
        Pediatr Rev. 2006; 27: 83-88
        • López-Alarcón M.
        • Martínez-Coronado A.
        • Velarde-Castro O.
        • Rendón-Macías E.
        • Fernández J.
        Supplementation with n3 long chain polyunsaturated fatty acids diminishes insulin resistance of obese prepubertal and pubertal children in a synergistic manner with weight loss.
        Arch Med Res. 2011; 42: E502-E508
        • Rasic-Milutinovic Z.
        • Perunicic G.
        • Pljesa S.
        • Gluvic Z.
        • Sobajic S.
        • Djuric L.
        • et al.
        Effects of n-3 PUFAs supplementation on insulin resistance and inflammatory biomarkers in hemodialysis patients.
        Ren Fail. 2007; 29: 321-329
        • Ventura R.
        • Fogagnolo M.A.
        • Tiemi T.A.P.
        • Ferretti R.
        • Santo N.H.
        • Marques M.J.
        Eicosapentaenoic acid decreases TNF-α and protects mdx dystrophic muscles of mice from degeneration.
        J Neuroimmunol. 2011; 232: 145-150
        • Fogagnolo M.A.
        • Minatel E.
        • Santo Neto H.
        • Marques M.J.
        Effects of fish oil containing eicosapentaenoic acid and docosahexaenoic acid on dystrophic mdx mice.
        Clin Nutr. 2013; 32: 636-642
        • de Carvalho S.C.
        • Apolinário L.M.
        • Matheus S.M.M.
        • Santo Neto H.
        • Marques M.J.
        EPA protects against muscle damage in the mdx mouse model of Duchenne muscular dystrophy by promoting a shift from the M1 to M2 macrophage phenotype.
        J Neuroimmunol. 2013; 264: 41-47
        • Vandesompele J.
        • De Preter K.
        • Pattyn F.
        • Poppe B.
        • Van Roy N.
        • De Paepe A.
        • et al.
        Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.
        Genome Biol. 2002; 3 (research0034.1–0034.11)
        • Evershed R.P.
        Gas chromatography of lipids.
        in: Hamilton R.J. Hamilton S. Lipid analysis. A practical approach. Oxford University Press, Oxford, U.K.1992: 113-115
        • Rodríguez-Cruz M.
        • González R.S.
        • Maldonado J.
        • López-Alarcón M.
        • Bernabé-García M.
        The effect of gestational age on expression of genes involved in uptake, trafficking and synthesis of fatty acids in the rat placenta.
        Gene. 2016; 591: 403-410
        • Moertl D.
        • Hammer A.
        • Steiner S.
        • Hutuleac R.
        • Vonbank K.
        • Berger R.
        Dose-dependent effects of omega-3-polyunsaturated fatty acids on systolic left ventricular function, endothelial function, and markers of inflammation in chronic heart failure of nonischemic origin: a double-blind, placebo-controlled, 3-arm study.
        Am Heart J. 2011; 61: 915e1-915e9
        • Schulz K.F.
        • Altman D.G.
        • Moher D.
        • Group C
        CONSORT 2010 statement: updated guidelines for reporting parallel group randomized trials.
        Int J Surg. 2011; 9: 672-677
        • Sun S.C.
        • Peng Y.S.
        • He J.B.
        Changes of serum creatine kinase levels in children with Duchenne muscular dystrophy.
        Chin J Contemp Pediatr. 2008; 10: 35-37
        • Tidball J.G.
        Regulation of muscle growth and regeneration by the immune system.
        Nat Rev Immunol. 2017; 17: 165-178
        • Cao J.
        • Schwichtenberg K.A.
        • Hanson N.Q.
        • Tsai M.Y.
        Incorporation and clearance of omega-3 fatty acids in erythrocyte membranes and plasma phospholipids.
        Clin Chem. 2006; 52: 2265-2272
        • Deconinck N.
        • Dan B.
        Duchenne Muscular Dystrophy: recent perspectives on pathophysiology.
        Proc Belg R Acad Med. 2013; 2: 132-144
        • Matsusaka T.
        • Fujikawa K.
        • Nishio Y.
        • Mukaida N.
        • Matsushima K.
        • Kishimoto T.
        • et al.
        Transcription factors NF-IL6 and NF-kappa B synergistically activate transcription of the inflammatory cytokines, interleukin 6 and interleukin 8.
        Proc Natl Acad Sci USA. 1993; 90: 10193-10197
        • Rodríguez-Cruz M.
        • Solís-Serna D.
        Nutrigenomics of omega-3 fatty acids: regulators of the master transcription factors.
        Nutrition. 2017; 41: 90-96
        • Apolinário L.M.
        • De Carvalho S.C.
        • Santo Neto H.
        • Marques M.J.
        Long-term therapy with omega-3 ameliorates myonecrosis and benefits skeletal muscle regeneration in mdx mice.
        Anat Rec. 2015; 298: 1589-1596
        • Acharyya S.
        • Villalta S.A.
        • Bakkar N.
        • Bupha-Intr T.
        • Janssen P.M.
        • Carathers M.
        • et al.
        Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy.
        J Clin Invest. 2007; 117: 889-901
        • Zhao Y.
        • Joshi-Barve S.
        • Barve S.
        • Chen L.H.
        Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappa B activation.
        J Am Coll Nutr. 2004; 23: 71-78
        • Allaire J.
        • Couture P.
        • Leclerc M.
        • Charest A.
        • Marin J.
        • Lépine M.C.
        • et al.
        A randomized, crossover, head-to-head comparison of eicosapentaenoic acid and docosahexaenoic acid supplementation to reduce inflammation markers in men and women: the comparing EPA to DHA (Compared) Study.
        Am J Clin Nutr. 2016; 104: 280-287
        • Barros K.V.
        • Cassulino A.P.
        • Schalch L.
        • Munhoz E.D.V.
        • Manetta J.A.
        • Calder P.C.
        • et al.
        Pharmaconutrition: acute fatty acid modulation of circulating cytokines in elderly patients in the ICU.
        J Parenter Enter Nutr. 2014; 38: 467-474
        • Bernabé-García M.
        • López-Alarcón M.
        • Villegas-Silva R.
        • Mancilla-Ramírez J.
        • Rodríguez-Cruz M.
        • Maldonado-Hernández J.
        • et al.
        Beneficial effects of enteral docosahexaenoic acid on the markers of inflammation and clinical outcomes of neonates undergoing cardiovascular surgery: a randomized clinical trial.
        Ann Nutr Metab. 2016; 69: 15-23
        • Itariu B.K.
        • Zeyda M.
        • Hochbrugger E.E.
        • Neuhofer A.
        • Prager G.
        • Schindler K.
        • et al.
        Long-chain n − 3 PUFAs reduce adipose tissue and systemic inflammation in severely obese non diabetic patients: a randomized controlled trial.
        Am J Clin Nutr. 2012; 96: 1137-1149
        • Gáti I.
        • Danielsson O.
        • Betmark T.
        • Ernerudh J.
        • Ollinger K.
        • Dizdar N.
        Effects of inhibitors of the arachidonic acid cascade on primary muscle culture from a Duchenne muscular dystrophy patient.
        Prostagl Leukot Essent Fat Acids. 2007; 77: 217-223
        • Fiaccavento R.
        • Carotenuto F.
        • Vecchini A.
        • Binaglia L.
        • Forte G.
        • Capucci E.
        • et al.
        An omega-3 fatty acid-enriched diet prevents skeletal muscle lesions in a hamster model of dystrophy.
        Am J Pathol. 2010; 177: 2176-2184
        • Kinali M.
        • Arechavala-Gomeza V.
        • Feng L.
        • Cirak S.
        • Hunt D.
        • Adkin C.
        • et al.
        Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study.
        Lancet Neurol. 2009; 8: 918-928
        • Merrick D.
        • Stadler L.K.
        • Larner D.
        • Smith J.
        Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation.
        Dis Model. 2009; 2: 374-388