Melatonin administration lowers biomarkers of oxidative stress and cardio-metabolic risk in type 2 diabetic patients with coronary heart disease: A randomized, double-blind, placebo-controlled trial

  • Fariba Raygan
    Affiliations
    Department of Cardiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
    Search for articles by this author
  • Vahidreza Ostadmohammadi
    Affiliations
    Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran

    Student Research Committee, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
    Search for articles by this author
  • Fereshteh Bahmani
    Affiliations
    Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
    Search for articles by this author
  • Russel J. Reiter
    Affiliations
    Department of Cellular and Structural Biology, University of Texas Health Science, Center, San Antonio, TX, USA
    Search for articles by this author
  • Zatollah Asemi
    Correspondence
    Corresponding author. Present address: Department of Nutrition, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran. Fax: +98 31 55463377.
    Affiliations
    Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
    Search for articles by this author
Published:December 12, 2017DOI:https://doi.org/10.1016/j.clnu.2017.12.004

      Summary

      Background & aims

      Melatonin may benefit diabetic people with coronary heart disease (CHD) through its beneficial effects on biomarkers of oxidative stress and cardio-metabolic risk. This investigation evaluated the effects of melatonin administration on metabolic status in diabetic patients with CHD.

      Methods

      This randomized, double-blind, placebo-controlled trial was conducted and involved 60 diabetic patients with CHD. Subjects were randomly allocated into two groups to receive either 10 mg melatonin (2 melatonin capsules, 5 mg each) (n = 30) or placebo (n = 30) once a day for 12 weeks.

      Results

      Compared with the placebo, melatonin supplementation resulted in significant increases in plasma glutathione (GSH) (+64.7 ± 105.7 vs. −11.1 ± 137.6 μmol/L, P = 0.02) and nitric oxide (NO) (+0.9 ± 4.7 vs. −3.3 ± 9.6 μmol/L, P = 0.03), and significant decreases in malondialdehyde (MDA) (−0.2 ± 0.3 vs. +0.1 ± 0.5 μmol/L, P = 0.007), protein carbonyl (PCO) (−0.12 ± 0.08 vs. +0.03 ± 0.07 mmol/mg protein, P < 0.001) and serum high sensitivity C-reactive protein (hs-CRP) levels (−1463.3 ± 2153.8 vs. +122.9 ± 1230.4 ng/mL, P = 0.001). In addition, taking melatonin, compared with the placebo, significantly reduced fasting plasma glucose (−29.4 ± 49.0 vs. −5.5 ± 32.4 mg/dL, P = 0.03), serum insulin concentrations (−2.2 ± 4.1 vs. +0.7 ± 4.2 μIU/mL, P = 0.008), homeostasis model of assessment-estimated insulin resistance (−1.0 ± 2.2 vs. +0.01 ± 1.6, P = 0.04), total-/HDL-cholesterol ratio (−0.18 ± 0.38 vs. +0.03 ± 0.35, P = 0.02) and systolic (−4.3 ± 9.6 vs. +1.0 ± 7.5 mmHg, P = 0.01) and diastolic blood pressure (−2.8 ± 7.3 vs. +0.1 ± 3.6 mmHg, P = 0.04). Melatonin treatment also significantly increased quantitative insulin sensitivity check index (+0.006 ± 0.01 vs. −0.004 ± 0.01, P = 0.01) and serum HDL-cholesterol (+2.6 ± 5.5 vs. −0.01 ± 4.4 mg/dL, P = 0.04). Supplementation with melatonin had no significant effect on other metabolic parameters.

      Conclusions

      Overall, melatonin intake for 12 weeks to diabetic patients with CHD had beneficial effects on plasma GSH, NO, MDA, PCO, serum hs-CRP levels, glycemic control, HDL-cholesterol, total-/HDL-cholesterol ratio, blood pressures and parameters of mental health. Registered under ClinicalTrials.gov Identifier no. http://www.irct.ir: IRCT2017051333941N1.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bundhun P.K.
        • Bhurtu A.
        • Yuan J.
        Impact of type 2 diabetes mellitus on the long-term mortality in patients who were treated by coronary artery bypass surgery: a systematic review and meta-analysis.
        Medicine (Baltimore). 2017; 96 (e7022)
        • Rathmann W.
        • Giani G.
        Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
        Diabetes Care. 2004; 27 (author reply 9): 2568-2569
        • Kayama Y.
        • Raaz U.
        • Jagger A.
        • Adam M.
        • Schellinger I.N.
        • Sakamoto M.
        • et al.
        Diabetic cardiovascular disease induced by oxidative stress.
        Int J Mol Sci. 2015; 16: 25234-25263
        • Bonamichi B.D.
        • Parente E.B.
        • Campos A.C.
        • Cury A.N.
        • Salles J.E.
        Hyperglycemia effect on coronary disease in patients with metabolic syndrome evaluated by intracoronary ultrasonography.
        Plos One. 2017; 12 (e0171733)
        • Paneni F.
        • Beckman J.A.
        • Creager M.A.
        • Cosentino F.
        Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I.
        Eur Heart J. 2013; 34: 2436-2443
        • Hikichi T.
        • Tateda N.
        • Miura T.
        Alteration of melatonin secretion in patients with type 2 diabetes and proliferative diabetic retinopathy.
        Clin Ophthalmol. 2011; 5: 655-660
        • Dominguez-Rodriguez A.
        • Abreu-Gonzalez P.
        • Garcia-Gonzalez M.
        • Ferrer-Hita J.
        • Vargas M.
        • Reiter R.J.
        Elevated levels of oxidized low-density lipoprotein and impaired nocturnal synthesis of melatonin in patients with myocardial infarction.
        Atherosclerosis. 2005; 180: 101-105
        • Peschke E.
        • Schucht H.
        • Muhlbauer E.
        Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats.
        J Pineal Res. 2010; 49: 373-381
        • Peschke E.
        • Hofmann K.
        • Bahr I.
        • Streck S.
        • Albrecht E.
        • Wedekind D.
        • et al.
        The insulin-melatonin antagonism: studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus).
        Diabetologia. 2011; 54: 1831-1840
        • Kozirog M.
        • Poliwczak A.R.
        • Duchnowicz P.
        • Koter-Michalak M.
        • Sikora J.
        • Broncel M.
        Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome.
        J Pineal Res. 2011; 50: 261-266
        • Mesri Alamdari N.
        • Mahdavi R.
        • Roshanravan N.
        • Lotfi Yaghin N.
        • Ostadrahimi A.R.
        • Faramarzi E.
        A double-blind, placebo-controlled trial related to the effects of melatonin on oxidative stress and inflammatory parameters of obese women.
        Horm Metab Res. 2015; 47: 504-508
        • Zanuto R.
        • Siqueira-Filho M.A.
        • Caperuto L.C.
        • Bacurau R.F.
        • Hirata E.
        • Peliciari-Garcia R.A.
        • et al.
        Melatonin improves insulin sensitivity independently of weight loss in old obese rats.
        J Pineal Res. 2013; 55: 156-165
        • Benzie I.F.
        • Strain J.J.
        The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay.
        Anal Biochem. 1996; 239: 70-76
        • Beutler E.
        • Gelbart T.
        Plasma glutathione in health and in patients with malignant disease.
        J Lab Clin Med. 1985; 105: 581-584
        • Levine R.L.
        • Garland D.
        • Oliver C.N.
        • Amici A.
        • Climent I.
        • Lenz A.G.
        • et al.
        Determination of carbonyl content in oxidatively modified proteins.
        Methods Enzymol. 1990; 186: 464-478
        • Beck A.T.
        • Ward C.H.
        • Mendelson M.
        • Mock J.
        • Erbaugh J.
        An inventory for measuring depression.
        Arch Gen Psychiatry. 1961; 4: 561-571
        • Beck A.T.
        • Epstein N.
        • Brown G.
        • Steer R.A.
        An inventory for measuring clinical anxiety: psychometric properties.
        J Consult Clin Psychol. 1988; 56: 893-897
        • Gitto E.
        • Karbownik M.
        • Reiter R.J.
        • Tan D.X.
        • Cuzzocrea S.
        • Chiurazzi P.
        • et al.
        Effects of melatonin treatment in septic newborns.
        Pediatr Res. 2001; 50: 756-760
        • Kedziora-Kornatowska K.
        • Szewczyk-Golec K.
        • Kozakiewicz M.
        • Pawluk H.
        • Czuczejko J.
        • Kornatowski T.
        • et al.
        Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients.
        J Pineal Res. 2009; 46: 333-337
        • Marjani A.
        Lipid peroxidation alterations in type 2 diabetic patients.
        Pak J Biol Sci. 2010; 13: 723-730
        • Ceriello A.
        • Esposito K.
        • Piconi L.
        • Ihnat M.A.
        • Thorpe J.E.
        • Testa R.
        • et al.
        Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients.
        Diabetes. 2008; 57: 1349-1354
        • Reiter R.J.
        • Mayo J.C.
        • Tan D.X.
        • Sainz R.M.
        • Alatorre-Jimenez M.
        • Qin L.
        Melatonin as an antioxidant: under promises but over delivers.
        J Pineal Res. 2016; 61: 253-278
        • Rodriguez C.
        • Mayo J.C.
        • Sainz R.M.
        • Antolin I.
        • Herrera F.
        • Martin V.
        • et al.
        Regulation of antioxidant enzymes: a significant role for melatonin.
        J Pineal Res. 2004; 36: 1-9
        • Carampin P.
        • Rosan S.
        • Dalzoppo D.
        • Zagotto G.
        • Zatta P.
        Some biochemical properties of melatonin and the characterization of a relevant metabolite arising from its interaction with H2O2.
        J Pineal Res. 2003; 34: 134-142
        • Rahman M.M.
        • Kwon H.S.
        • Kim M.J.
        • Go H.K.
        • Oak M.H.
        • Kim D.H.
        Melatonin supplementation plus exercise behavior ameliorate insulin resistance, hypertension and fatigue in a rat model of type 2 diabetes mellitus.
        Biomed Pharmacother. 2017; 92: 606-614
        • Contreras-Alcantara S.
        • Baba K.
        • Tosini G.
        Removal of melatonin receptor type 1 induces insulin resistance in the mouse.
        Obesity (Silver Spring). 2010; 18: 1861-1863
        • Agil A.
        • Navarro-Alarcon M.
        • Ruiz R.
        • Abuhamadah S.
        • El-Mir M.Y.
        • Vazquez G.F.
        Beneficial effects of melatonin on obesity and lipid profile in young Zucker diabetic fatty rats.
        J Pineal Res. 2011; 50: 207-212
        • Wakatsuki A.
        • Okatani Y.
        • Ikenoue N.
        • Kaneda C.
        • Fukaya T.
        Effects of short-term melatonin administration on lipoprotein metabolism in normolipidemic postmenopausal women.
        Maturitas. 2001; 38: 171-177
        • Elam M.B.
        • Hunninghake D.B.
        • Davis K.B.
        • Garg R.
        • Johnson C.
        • Egan D.
        • et al.
        Effect of niacin on lipid and lipoprotein levels and glycemic control in patients with diabetes and peripheral arterial disease: the ADMIT study: a randomized trial. Arterial Disease Multiple Intervention Trial.
        J Am Med Assoc. 2000; 284: 1263-1270
        • Tamura H.
        • Nakamura Y.
        • Narimatsu A.
        • Yamagata Y.
        • Takasaki A.
        • Reiter R.J.
        • et al.
        Melatonin treatment in peri- and postmenopausal women elevates serum high-density lipoprotein cholesterol levels without influencing total cholesterol levels.
        J Pineal Res. 2008; 45: 101-105