Intermittent energy restriction is comparable to continuous energy restriction for cardiometabolic health in adults with central obesity: A randomized controlled trial; the Met-IER study

  • Ana M. Pinto
    Correspondence
    Corresponding author.
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Claire Bordoli
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Luke P. Buckner
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Curie Kim
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Polly C. Kaplan
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Ines M. Del Arenal
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Emma J. Jeffcock
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author
  • Wendy L. Hall
    Affiliations
    Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
    Search for articles by this author

      Summary

      Background & aims

      Short bouts of severe energy restriction may have additional, beneficial cardiometabolic effects beyond that of weight loss. We aimed to assess the short-term effects of intermittent fasting on insulin sensitivity and related cardiometabolic mechanisms.

      Methods

      This parallel arm, randomized controlled trial compared the short-term effects of intermittent and continuous energy restriction (IER and CER) diets on markers of cardiometabolic health in individuals with central obesity, aiming for equivalent weight loss on both diets. Outcomes were assessed in non-smoking men and women (35–75 y), following 4-wk IER (48 h 600 kcal/d followed by 5-day healthy eating advice) or CER diets (−500 kcal/d healthy eating advice). The primary outcome was the revised quantitative insulin sensitivity check index (R-QUICKI), an indirect estimate of insulin sensitivity. Secondary outcomes included ambulatory blood pressure (ABP), indicators of sympathetic activity (heart rate variability (HRV) and normetanephrine), and markers of glucose homeostasis/insulin resistance, adiposity, lipids and inflammation.

      Results

      Forty-three participants completed the study. Reductions in body weight were equivalent in both groups: mean loss (%) −2.6; 95% CI −3.3, −1.9 and −2.9; −3.6, −2.1 for CER and IER, respectively, P = 0.464). R-QUICKI increased following IER and CER, with no between-diet differences (overall mean increase (%) 6.6; 3.6, 9.6). Fasting plasma glucose concentrations decreased after CER but not after IER (mean difference CER–IER - 4.8% (0.7, 8.9), P < 0.05) and fasting plasma non-esterified fatty acid concentrations were lower after IER compared to CER (mean difference CER–IER 0.15 mmol/L (0.06, 0.24), P < 0.005). There were no differences in lipids, adipokine/inflammatory markers, ABP or HRV between diets.

      Conclusions

      Short-term CER or IER diets are comparable in their effects on most markers of cardiometabolic risk, although adaptive changes in glucose and fatty acid metabolism occur. This study is registered at clinicaltrials.gov as NCT02679989.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Pi-Sunyer X.
        The medical risks of obesity.
        Postgrad Med. 2009; 121: 21-33
        • Jung U.
        • Choi M.-S.
        Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease.
        Int J Mol Sci. 2014; 15: 6184-6223https://doi.org/10.3390/ijms15046184
        • Klein S.
        • Allison D.
        • Heymsfield S.
        • Kelley D.
        • Leibel R.
        • Nonas C.
        • et al.
        Waist circumference and cardiometabolic risk: a consensus statement from shaping America's health: association for weight management and obesity prevention.
        Obesity. 2007; 15: 1061-1067https://doi.org/10.2337/dc07-9921
        • Jensen M.D.
        Is visceral fat involved in the pathogenesis of the metabolic syndrome? Human model.
        Obesity. 2006; 14: 20S-24Shttps://doi.org/10.1038/oby.2006.278
        • Chaston T.B.
        • Dixon J.B.
        • O'Brien P.E.
        Changes in fat-free mass during significant weight loss: a systematic review.
        Int J Obes. 2007; 31: 743-750https://doi.org/10.1038/sj.ijo.0803483
        • Browning J.D.
        • Baker J.A.
        • Rogers T.
        • Davis J.
        • Satapati S.
        • Burgess S.C.
        Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction.
        Am J Clin Nutr. 2011; 93: 1048-1052https://doi.org/10.3945/ajcn.110.007674
        • Maxwell M.H.
        • Kushiro T.
        • Dornfeld L.P.
        • Tuck M.L.
        • Waks A.U.
        BP changes in obese hypertensive subjects during rapid weight loss: comparison of restricted v unchanged salt intake.
        Arch Intern Med. 1984; 144: 1581-1584https://doi.org/10.1001/archinte.1984.00350200073012
        • Pasquali R.
        • Gambineri A.
        • Biscotti D.
        • Vicennati V.
        • Gagliardi L.
        • Colitta D.
        • et al.
        Effect of long-term treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome.
        J Clin Endocrinol Metab. 2000; 85: 2767-2774https://doi.org/10.1210/jcem.85.8.6738
        • Lobley G.E.
        • Holtrop G.
        • Bremner D.M.
        • Calder A.G.
        • Milne E.
        • Johnstone A.M.
        Impact of short term consumption of diets high in either non-starch polysaccharides or resistant starch in comparison with moderate weight loss on indices of insulin sensitivity in subjects with metabolic syndrome.
        Nutrients. 2013; 5: 2144-2172https://doi.org/10.3390/nu5062144
        • Mouridsen M.R.
        • Bendsen N.T.
        • Astrup A.
        • Haugaard S.B.
        • Binici Z.
        • Sajadieh A.
        Modest weight loss in moderately overweight postmenopausal women improves heart rate variability.
        Eur J Prev Cardiol. 2013; 20: 671-677
        • Alvarez G.E.
        • Beske S.D.
        • Ballard T.P.
        • Davy K.P.
        Sympathetic neural activation in visceral obesity.
        Circulation. 2002; 106: 2533-2536
        • Lindmark S.
        • Lönn L.
        • Wiklund U.
        • Tufvesson M.
        • Olsson T.
        • Eriksson J.W.
        Dysregulation of the autonomic nervous system can be a link between visceral adiposity and insulin resistance.
        Obes Res. 2005; 13: 717-728
        • do Carmo J.M.
        • da Silva A.A.
        • Wang Z.
        • Fang T.
        • Aberdein Nicola
        • de Lara Rodriguez C.E.
        Obesity-induced hypertension: brain signaling pathways.
        Curr Hypertens Rep. 2016; 18: 58
        • Straznicky N.E.
        • Eikelis N.
        • Lambert E.A.
        • Esler M.D.
        Mediators of sympathetic activation in metabolic syndrome obesity.
        Curr Hypertens Rep. 2008; 10: 440-447
        • Skrapari I.
        • Tentolouris N.
        • Perrea D.
        • Bakoyiannis C.
        • Papazafiropoulou A.
        • Katsilambros N.
        Baroreflex sensitivity in obesity: relationship with cardiac autonomic nervous system activity.
        Obesity. 2007; 15: 1685-1693
        • Grassi G.
        • Dell'Oro R.
        • Facchini A.
        • Quarti-trevano F.
        • Bolla G.B.
        • Mancia G.
        Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives.
        J Hypertens. 2004; 22: 2363-2369
        • Gamboa A.
        • Okamoto L.E.
        • Arnold A.C.
        • Figueroa A.
        • Diedrich A.
        • Raj S.R.
        • et al.
        Autonomic blockade improves insulin sensitivity in obese subjects.
        Hypertension. 2014; 64: 867-874
        • Raynor H.A.
        • Champagne C.M.
        Position of the academy of nutrition and dietetics: interventions for the treatment of overweight and obesity in adults.
        J Acad Nutr Diet. 2016; 116: 129-147https://doi.org/10.1016/j.jand.2015.10.031
        • Hankey C.R.
        Session 3 (Joint with the British dietetic association): management of obesity – weight-loss interventions in the treatment of obesity.
        Proc Nutr Soc. 2010; 69: 34-38https://doi.org/10.1017/S0029665109991844
        • Klempel M.C.
        • Kroeger C.M.
        • Varady K.A.
        Alternate day fasting (ADF) with a high-fat diet produces similar weight loss and cardio-protection as ADF with a low-fat diet.
        Metabolism. 2013; 62: 137-143https://doi.org/10.1016/j.metabol.2012.07.002
        • Harris L.
        • McGarty A.
        • Hutchison L.
        • Ells L.
        • Hankey C.
        Short-term intermittent energy restriction interventions for weight management: a systematic review and meta-analysis.
        Obes Rev. 2018; 19: 1-13https://doi.org/10.1111/obr.12593
        • Davis C.S.
        • Clarke R.E.
        • Coulter S.N.
        • Rounsefell K.N.
        • Walker R.E.
        • Rauch C.E.
        • et al.
        Intermittent energy restriction and weight loss: a systematic review.
        Eur J Clin Nutr. 2016; 70: 292-299https://doi.org/10.1038/ejcn.2015.195
        • Headland M.
        • Clifton P.M.
        • Carter S.
        • Keogh J.B.
        Weight-loss outcomes: a systematic review and meta-analysis of intermittent energy restriction trials lasting a minimum of 6 months.
        Nutrients. 2016; 8https://doi.org/10.3390/nu8060354
        • Cioffi I.
        • Evangelista A.
        • Ponzo V.
        • Ciccone G.
        • Soldati L.
        • Santarpia L.
        • et al.
        Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta – analysis of randomized controlled trials.
        J Transl Med. 2018; 16: 371https://doi.org/10.1186/s12967-018-1748-4
        • Sundfør T.M.
        • Svendsen M.
        • Tonstad S.
        Effect of intermittent versus continuous energy restriction on weight loss, maintenance and cardiometabolic risk: a randomized 1-year trial.
        Nutr Metab Cardiovasc Dis. 2018; 28: 698-706https://doi.org/10.1016/j.numecd.2018.03.009
        • Patterson R.E.
        • Sears D.D.
        Metabolic effects of intermittent fasting.
        Annu Rev Nutr. 2017; 21: 371-393https://doi.org/10.1146/annurev-nutr-071816
        • Antoni R.
        • Johnston K.L.
        • Collins A.L.
        • Robertson M.D.
        Effects of intermittent fasting on glucose and lipid metabolism.
        Proc Nutr Soc. 2017; 76: 361-368https://doi.org/10.1017/S0029665116002986
        • Seimon R.V.
        • Roekenes J.A.
        • Zibellini J.
        • Zhu B.
        • Gibson A.A.
        • Hills A.P.
        • et al.
        Do intermittent diets provide physiological benefits over continuous diets for weight loss? A systematic review of clinical trials.
        Mol Cell Endocrinol. 2015; 418: 153-172https://doi.org/10.1016/j.mce.2015.09.014
        • Harvie M.N.
        • Pegington M.
        • Mattson M.P.
        • Frystyk J.
        • Dillon B.
        • Cuzick J.
        • et al.
        The effects of intermittent or continuous restriction on weight loss and metabolic disease risk markers: a randomised trial in young overweight women.
        Int J Obes. 2011; 35: 714-727
        • Harvie M.
        • Wright C.
        • Pegington M.
        • McMullan D.
        • Mitchell E.
        • Martin B.
        • et al.
        The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women.
        Br J Nutr. 2013; 110: 1534-1547
        • Hara T.
        • Kimura I.
        • Inoue D.
        • Ichimura A.
        • Hirasawa A.
        Free fatty acid receptors and their role in regulation of energy metabolism.
        Rev Physiol Biochem Pharmacol. 2013; 164: 77-116
        • World Health Organization
        Waist circumference and waist-hip ratio: report of a WHO Expert consultation.
        2008
        • Misra A.
        • Chowbey P.
        • Makkar B.M.
        • Vikram N.K.
        • Wasir J.S.
        • Chadha D.
        • et al.
        Consensus statement for Diagnosis of obesity, abdominal obesity and the metabolic syndrome for Asian Indians and recommendations for physical activity, medical and surgical management.
        J Assoc Physicians India. 2009; 57: 163-170
        • van Strien T.
        • Frijters J.E.R.
        • Bergers G.P.A.
        • Defares P.B.
        The Dutch eating behavior questionnaire (DEBQ) for assessment of restrained , emotional , and external eating behavior.
        Int J Eat Disord. 1986; 5: 295-315https://doi.org/10.1002/erv.2448
        • Carver C.S.
        • Scheier M.F.
        Assessing coping strategies: a theoretically based approach.
        J Pers Soc Psychol. 1989; 56: 267-283https://doi.org/10.1037/0022-3514.56.2.267
        • SS M.
        • Stevenson R.
        • Wu C.
        • Rutledge S.
        • Stark C.E.
        Stability of age-related deficits in the mnemonic similarity task across task variations.
        Behav Neurosci. 2015; 129: 257-268
        • Fillion L.
        • Puntillo K.A.
        • Viens C.
        • Fortier M.
        • City Q.
        Validation of the COSMED FitMate for prediction of maximal oxygen consumption.
        . 2006; 15: 18-20
        • Nieman D.C.
        • Austin M.D.
        • Benezra L.
        • Pearce S.
        • McInnis T.
        • Unick J.
        • et al.
        Validation of Cosmed's FitMate in measuring oxygen consumption and estimating resting metabolic rate.
        Res Sports Med. 2006; 14: 89-96https://doi.org/10.1080/15438620600651512
        • Gerrior S.
        • Juan W.
        • Basiotis P.
        An easy approach to calculating estimated energy requirements.
        Prev Chronic Dis. 2006; 3: A129
        • Bauman A.
        • Bull F.
        • Chey T.
        • Craig C.L.
        • Ainsworth B.E.
        • Sallis J.F.
        • et al.
        The international prevalence study on physical activity: results from 20 countries.
        Int J Behav Nutr Phys Act. 2009; 6: 1https://doi.org/10.1186/1479-5868-6-21
        • Lowe M.R.
        • Butryn M.L.
        • Didie E.R.
        • Annunziato R.A.
        • Thomas J.G.
        • Crerand C.E.
        • et al.
        The power of food scale. A new measure of the psychological influence of the food environment.
        Appetite. 2009; 53: 114-118https://doi.org/10.1016/j.appet.2009.05.016
        • Perseghin G.
        • Caumo A.
        • Caloni M.
        • Testolin G.
        • Luzi L.
        Incorporation of the fasting plasma FFA concentration into QUICKI improves its association with insulin sensitivity in nonobese individuals.
        J Clin Endocrinol Metab. 2001; 86: 4776-4781https://doi.org/10.1210/jc.86.10.4776
        • Wlazlo N.
        • Van Greevenbroek M.M.J.
        • Ferreira I.
        • Jansen E.J.H.M.
        • Feskens E.J.M.
        • Van Der Kallen C.J.H.
        • et al.
        Low-grade inflammation and insulin resistance independently explain substantial parts of the association between body fat and serum C3: the CODAM study.
        Metabolism. 2012; 61: 1787-1796https://doi.org/10.1016/j.metabol.2012.05.015
        • van Bussel B.C.T.
        • Henry R.M.A.
        • Schalkwijk C.G.
        • Dekker J.M.
        • Nijpels G.
        • Stehouwer C.D.A.
        Low-grade inflammation, but not endothelial dysfunction, is associated with greater carotid stiffness in the elderly.
        J Hypertens. 2012; 30: 744-752https://doi.org/10.1097/HJH.0b013e328350a487
        • van Greevenbroek M.M.J.
        • Jacobs M.
        • van der Kallen C.J.H.
        • Vermeulen V.M.M.J.
        • Jansen E.H.J.M.
        • Schalkwijk C.G.
        • et al.
        The cross-sectional association between insulin resistance and circulating complement C3 is partly explained by plasma alanine aminotransferase, independent of central obesity and general inflammation (the CODAM study).
        Eur J Clin Investig. 2011; 41: 372-379https://doi.org/10.1111/j.1365-2362.2010.02418.x
        • Boutcher Y.N.
        • Boutcher S.H.
        Cardiovascular response to Stroop: effect of verbal response and task difficulty.
        Biol Psychol. 2006; 73: 235-241
        • Malik M.
        • Bigger J.T.
        • Camm A.J.
        • Kleiger R.E.
        • Malliani A.
        • Moss A.J.
        • et al.
        Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology.
        Eur Heart J. 1996; 17: 354-381
        • Rabasa-Lhoret R.
        • Bastard J.P.
        • Jan V.
        • Ducluzeau P.H.
        • Andreelli F.
        • Guebre F.
        • et al.
        Modified quantitative insulin sensitivity check index is better correlated to hyperinsulinemic glucose clamp than other fasting-based index of insulin sensitivity in different insulin-resistant states.
        J Clin Endocrinol Metab. 2003; 88: 4917-4923https://doi.org/10.1210/jc.2002-030316
        • Reidlinger D.P.
        • Darzi J.
        • Hall W.L.
        • Seed P.T.
        • Chowienczyk P.J.
        • Sanders T.A.B.
        • et al.
        How effective are current dietary guidelines for cardiovascular disease prevention in healthy middle-aged and older men and women? A randomized controlled trial.
        Am J Clin Nutr. 2015; 101https://doi.org/10.3945/ajcn.114.097352
        • Antoni R.
        • Johnston K.L.
        • Collins A.L.
        • Robertson M.D.
        Intermittent v. continuous energy restriction: differential effects on postprandial glucose and lipid metabolism following matched weight loss in overweight/obese participants.
        Br J Nutr. 2018; 119: 507-516https://doi.org/10.1017/S0007114517003890
        • Williams K.V.
        • Mullen M.L.
        • Kelley D.E.
        • Wing R.R.
        The effect of short periods of caloric restriction on weight loss and glycemic control in type 2 diabetes.
        Diabetes Care. 1998; 21: 2-8https://doi.org/10.2337/diacare.21.1.2
        • Conley M.
        • Le Fevre L.
        • Haywood C.
        • Proietto J.
        Is two days of intermittent energy restriction per week a feasible weight loss approach in obese males? A randomised pilot study.
        Nutr Diet. 2018; 75: 65-72https://doi.org/10.1111/1747-0080.12372
        • Wing R.R.
        • Blair E.H.
        • Bononi P.
        • Marcus M.D.
        • Watanabe R.
        • Bergman R.N.
        Caloric restriction per Se is a significant factor in improvements in glycemic during weight loss in obese.
        Diabetes Care. 1994; 17: 30-36https://doi.org/10.2337/diacare.17.1.30
        • Hill J.
        • Schlundt D.
        • Sbrocco T.
        • Sharp T.
        • Pope-Cordle J.
        • Stetson B.
        • et al.
        Evaluation of an alternating-calorie diet with and without exercise in the treatment of obesity.
        Am J Clin Nutr. 1989; 50: 248-254
        • Corpeleijn E.
        • Saris W.H.M.
        • Blaak E.E.
        Metabolic flexibility in the development of insulin resistance and type 2 diabetes: effects of lifestyle: etiology and pathophysiology.
        Obes Rev. 2009; 10: 178-193https://doi.org/10.1111/j.1467-789X.2008.00544.x
        • Meijssen S.
        • Castro Cabezas M.
        • Ballieux C.G.M.
        • Derksen R.J.
        • Bilecen S.
        • Erkelens D.W.
        Insulin mediated inhibition of hormone sensitive lipase activity in vivo in relation to endogenous catecholamines in healthy subjects.
        J Clin Endocrinol Metab. 2001; 86: 4193-4197https://doi.org/10.1210/jcem.86.9.7794
        • Soeters M.R.
        • Lammers N.M.
        • Dubbelhuis P.F.
        • Ackermans M.
        • Jonkers-Schuitema C.F.
        • Fliers E.
        • et al.
        Intermittent fasting does not affect whole-body glucose, lipid, or protein metabolism.
        Am J Clin Nutr. 2009; 90: 1244-1251https://doi.org/10.3945/ajcn.2008.27327
        • López-Jaramillo P.
        • Gómez-Arbeláez D.
        • López-López J.
        • López-López C.
        • Martínez-Ortega J.
        • Gómez-Rodríguez A.
        • et al.
        The role of leptin/adiponectin ratio in metabolic syndrome and diabetes.
        Horm Mol Biol Clin Investig. 2014; 18https://doi.org/10.1515/hmbci-2013-0053
        • Wronska A.
        • Kmiec Z.
        Structural and biochemical characteristics of various white adipose tissue depots.
        Acta Physiol. 2012; 205: 194-208https://doi.org/10.1111/j.1748-1716.2012.02409.x
        • Klempel M.C.
        • Kroeger C.M.
        • Bhutani S.
        • Trepanowski J.F.
        • Varady K.A.
        Intermittent fasting combined with calorie restriction is effective for weight loss and cardio-protection in obese women.
        Nutr J. 2012; 11: 98
        • Klempel M.C.
        • Varady K.A.
        Reliability of leptin, but not adiponectin, as a biomarker for diet-induced weight loss in humans.
        Nutr Rev. 2011; 69: 145-154https://doi.org/10.1111/j.1753-4887.2011.00373.x
        • Do Carmo J.M.
        • Da Silva A.A.
        • Dubinion J.
        • Sessums P.O.
        • Ebaady S.H.
        • Wang Z.
        • et al.
        Control of metabolic and cardiovascular function by the leptin-brain melanocortin pathway.
        IUBMB Life. 2013; 65: 692-698https://doi.org/10.1002/iub.1187
        • Trepanowski J.F.
        • Kroeger C.M.
        • Barnosky A.
        • Klempel M.C.
        • Bhutani S.
        • Hoddy K.K.
        • et al.
        Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults: a randomized clinical trial.
        JAMA Intern Med. 2017; 177: 930-938https://doi.org/10.1001/jamainternmed.2017.0936
        • Mager D.E.
        • Wan R.
        • Brown M.
        • Cheng A.
        • Wareski P.
        • Abernethy D.R.
        • et al.
        Caloric restriction and intermittent fasting alter spectral measures of heart rate and blood pressure variability in rats.
        FASEB J. 2006; 20: 631-637
        • Shoelson S.E.
        • Lee J.
        • Goldfine A.B.
        Review series inflammation and insulin resistance.
        J Clin Investig. 2006; 116: 1793-1801https://doi.org/10.1172/JCI29069.and
        • Phillips C.M.
        • Perry I.J.
        Does inflammation determine metabolic health Status in obese and nonobese adults?.
        J Clin Endocrinol Metab. 2013; 98: E1610-E1619https://doi.org/10.1210/jc.2013-2038
        • Kim C.-S.
        • Park H.-S.
        • Kawada T.
        • Kim J.-H.
        • Lim D.
        • Hubbard N.E.
        • et al.
        Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters.
        Int J Obes. 2006; 30: 1347-1355https://doi.org/10.1038/sj.ijo.0803259
        • Vandanmagsar B.
        • Youm Y.-H.
        • Ravussin A.
        • Galgani J.E.
        • Stadler K.
        • Mynatt R.L.
        • et al.
        The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.
        Nat Med. 2011; 17: 179-188https://doi.org/10.1038/nm.2279
        • Esser N.
        • L'homme L.
        • De Roover A.
        • Kohnen L.
        • Scheen A.J.
        • Moutschen M.
        • et al.
        Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue.
        Diabetologia. 2013; 56: 2487-2497https://doi.org/10.1007/s00125-013-3023-9
        • Ballak D.B.
        • Stienstra R.
        • Tack C.J.
        • Dinarello C.A.
        • van Diepen J.A.
        IL-1 family members in the pathogenesis and treatment of metabolic disease: focus on adipose tissue inflammation and insulin resistance.
        Cytokine. 2015; 75: 280-290https://doi.org/10.1016/j.cyto.2015.05.005
        • Mazidi M.
        • Rezaie P.
        • Kengne A.P.
        • Stathopoulou M.G.
        • Azimi-Nezhad M.
        • Siest S.
        VEGF, the underlying factor for metabolic syndrome; fact or fiction?.
        Diabetes Metab Syndr Clin Res Rev. 2017; 11: S61-S64https://doi.org/10.1016/j.dsx.2016.12.004
        • Johnson J.B.
        • Summer W.
        • Cutler R.G.
        • Martin B.
        • Hyun D.-H.
        • Dixit V.D.
        • et al.
        Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma.
        Free Radic Biol Med. 2007; 42: 665-674https://doi.org/10.1016/j.freeradbiomed.2006.12.005
        • Halberg N.
        • Henriksen M.
        • Söderhamn N.
        • Stallknecht B.
        • Ploug T.
        • Schjerling P.
        • et al.
        Effect of intermittent fasting and refeeding on insulin action in healthy men.
        J Appl Physiol. 2005; 99: 2128https://doi.org/10.1152/japplphysiol.00683.2005
        • Mancia G.
        • Fagard R.
        • Narkiewicz K.
        • Redon J.
        • Zanchetti A.
        • Böhm M.
        • et al.
        2013 ESH/ESC guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of hypertension (ESH) and of the European Society of Cardiology (ESC).
        J Hypertens. 2013; 31: 1281-1357https://doi.org/10.1093/eurheartj/eht151