Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study

Published:April 11, 2020DOI:https://doi.org/10.1016/j.clnu.2020.04.007

      Summary

      Objective

      To evaluate the effects of moderate-term açaí and juçara juice intake on fasting glucose, lipid profile, and oxidative stress biomarkers in healthy subjects.

      Methods

      A randomized cross-over study was performed with 30 healthy adults. The subjects were assigned to drink 200 mL/day of açaí or juçara juice for four weeks with a 4-week washout period. Before and after each nutritional intervention, blood samples were obtained to evaluate the outcomes: fasting glucose, total cholesterol, triglycerides, high-density lipoprotein-cholesterol (HDL-c), low-density lipoprotein-cholesterol (LDL-c), small, dense LDL-c (sd-LDL-c), total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), uric acid, and activity of the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).

      Results

      After four weeks, açaí and juçara juices increased the concentrations of HDL-c by 7.7% and 11.4%, respectively (P < 0.05). In addition, açaí juice intake promoted significant increases in TAC (66.7%), CAT (275.1%), GPx (15.3%), and a decrease in OSI (55.7%) compared to baseline (P < 0.05 for all). Juçara juice intake significantly increased CAT activity (~15.0%) in relation to baseline. No significant intergroup differences were observed for any outcomes (P > 0.05).

      Conclusion

      The results indicated a positive impact of regular consumption of açaí and juçara juices on the HDL-c levels, as well as on the antioxidant enzyme activities, which may contribute to cardiovascular health.

      Keywords

      Abbreviations:

      ACN (anthocyanins), BMI (body mass index), CAT (catalase), DPPH (radical 2,2-diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant power), GPx (glutathione peroxidase), HDL-c (high-density lipoprotein-cholesterol), IR (interquartile range), LDL-c (low-density lipoprotein-cholesterol), OSI (oxidative stress index), SD (standard deviation), sd-LDL-c (small, dense LDL-c), SE (standard error), SOD (superoxide dismutase), T0 (before intervention), T1 (after intervention), TAC (plasma antioxidant capacity), TOS (total oxidant status)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Companhia Nacional de Abastecimento
        Ministério da Agricultura, Pecuária e Abastecimento. Conjuntura Mensal: Juçara (fruto).
        CONAB, Brasil2016
        • Yamaguchi K.K.L.
        • Pereira L.F.R.
        • Lamarão C.V.
        • Lima E.S.
        • da Veiga-Junior V.F.
        Amazon acai: chemistry and biological activities: a review.
        Food Chem. 2015; 179: 137-151https://doi.org/10.1016/j.foodchem.2015.01.055
        • De Moura R.S.
        • Resende A.C.
        Cardiovascular and metabolic effects of açaí, an amazon plant.
        J Cardiovasc Pharmacol. 2016; 68: 19-26https://doi.org/10.1097/FJC.0000000000000347
        • Schulz M.
        • Borges G.S.C.
        • Gonzaga L.V.
        • Costa A.C.O.
        • Fett R.
        Juçara fruit (Euterpe edulis Mart.): sustainable exploitation of a source of bioactive compounds.
        Food Res Int. 2016; 89: 14-26https://doi.org/10.1016/j.foodres.2016.07.027
        • Cardoso A.L.
        • de Liz S.
        • Rieger D.K.
        • Farah A.C.A.
        • Vieira F.G.K.
        • de Assis M.A.A.
        • et al.
        An update on the biological activities of Euterpe edulis (juçara).
        Planta Med. 2018; 84: 487-499https://doi.org/10.1055/s-0044-101624
        • Del Bó C.
        • Martini D.
        • Porrini M.
        • Klimis-Zacas D.
        • Riso P.
        Berries and oxidative stress markers: an overview of human intervention studies.
        Food Funct. 2015 Sep; 6: 2890-2917https://doi.org/10.1039/C5FO00657K
        • Pojer E.
        • Mattivi F.
        • Johnson D.
        • Stockley C.S.
        The case for anthocyanin consumption to promote human health: a review.
        Compr Rev Food Sci Food Saf. 2013; 12: 483-508https://doi.org/10.1111/1541-4337.12024
        • Lee Y.M.
        • Yoon Y.
        • Yoon H.
        • Park H.M.
        • Song S.
        • Yeum K.J.
        Dietary anthocyanins against obesity and inflammation.
        Nutrients. 2017; 9: E1089https://doi.org/10.3390/nu9101089
        • Joseph S.V.
        • Edirisinghe I.
        • Burton-Freeman B.M.
        Fruit polyphenols: a review of anti-inflammatory effects in humans.
        Crit Rev Food Sci Nutr. 2016; 56: 419-444https://doi.org/10.1080/10408398.2013.767221
        • Peixoto H.
        • Roxo M.
        • Krstin S.
        • Teresa Röhrig T.
        • Richling E.
        • Wink M.
        An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) mediates neuroprotective activities in Caenorhabditis elegans.
        J Agric Food Chem. 2016; 64: 1283-1290https://doi.org/10.1021/acs.jafc.5b05812
        • Lin B.W.
        • Gong C.C.
        • Song H.F.
        • Cui Y.Y.
        Effects of anthocyanins on the prevention and treatment of cancer.
        Br J Pharmacol. 2017; 174: 1226-1243https://doi.org/10.1111/bph.13627
        • Cassidy A.
        Berry anthocyanin intake and cardiovascular health.
        Mol Aspect Med. 2017; 61: 76-82https://doi.org/10.1016/j.mam.2017.05.002
        • Reis J.F.
        • Monteiro V.V.S.
        • Gomes R.S.
        • do Carmo M.M.
        • da Costa G.V.
        • Ribera P.C.
        • et al.
        Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies.
        J Transl Med. 2016; 14: 315https://doi.org/10.1186/s12967-016-1076-5
        • Sacks F.M.
        • Lichtenstein A.H.
        • Wu J.H.Y.
        • Appel L.J.
        • Creager M.A.
        • Kris-Etherton P.M.
        • et al.
        American heart association. Dietary fats and cardiovascular disease: a presidential advisory from the American heart association.
        Circulation. 2017; 136: e1-e23https://doi.org/10.1161/CIR.0000000000000510
        • Faludi A.A.
        • Oliveira I.M.C.
        • Kerr S.J.F.
        • Marte C.A.P.
        • Tria B.H.
        • Abrahão N.A.
        • et al.
        Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose.
        Arq Bras Cardiol. 2017; 109: 1-76https://doi.org/10.5935/abc.20170121
        • Michas G.
        • Micha R.
        • Zampelas A.
        Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle.
        Atherosclerosis. 2014; 234: 320-328https://doi.org/10.1016/j.atherosclerosis.2014.03.013
        • Santos R.D.
        • Gagliardi A.C.M.
        • Xavier H.T.
        • Magnoni C.D.
        • Cassani R.
        • Lottenberg A.M.P.
        • et al.
        I Diretriz sobre o consumo de gorduras e saúde cardiovascular.
        Arq Bras Cardiol. 2013; 100: 48phttps://doi.org/10.5935/abc.2013S003
        • Alvarez-Suarez J.M.
        • Giampieri F.
        • Tulipani S.
        • Casoli T.
        • Di Stefano G.
        • González-Paramás A.M.
        • et al.
        One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans.
        J Nutr Biochem. 2014; 25: 289-294https://doi.org/10.1016/j.jnutbio.2013.11.002
        • Kardum N.
        • Takić M.
        • Šavikin K.
        • Zec M.
        • Zdunić G.
        • Spasić S.
        • et al.
        Effects of polyphenol-rich chokeberry juice on cellular antioxidant enzymes and membrane lipid status in healthy women.
        J Funct Foods. 2014; 9: 89-97https://doi.org/10.1016/j.jff.2014.04.019
        • Kuntz S.
        • Kunz C.
        • Herrmann J.
        • Borsch C.H.
        • Abel G.
        • Fröhling B.
        • et al.
        Anthocyanins from fruit juices improve the antioxidant status of healthy young female volunteers without affecting anti-inflammatory parameters: results from the randomised, double-blind, placebo-controlled, cross-over ANTHONIA (ANTHOcyanins in Nutrition Investigation Alliance) study.
        Br J Nutr. 2014; 112: 925-936https://doi.org/10.1017/S0007114514001482
        • Udani J.K.
        • Singh B.B.
        • Singh V.J.
        • Barrett M.L.
        Effects of açai (Euterpe oleracea Mart.) berry preparation on metabolic parameters in a healthy overweight population: a pilot study.
        Nutr J. 2011; 10: 45https://doi.org/10.1186/1475-2891-10-45
        • Lynn A.
        • Mathew S.
        • Moore C.T.
        • Russell J.
        • Robinson E.
        • Soumpasi V.
        • et al.
        Effect of a tart cherry juice supplement on arterial stiffness and inflammation in healthy adults: a randomised controlled trial.
        Plant Foods Hum Nutr. 2014; 69: 122-127https://doi.org/10.1007/s11130-014-0409-x
        • Santhakumar A.B.
        • Kundur A.R.
        • Fanning K.
        • Netzel M.
        • Stanley R.
        • Singh I.
        Consumption of anthocyanin-rich Queen Garnet plum juice reduces platelet activation related thrombogenesis in healthy volunteers.
        J Funct Foods. 2015; 12: 11-22https://doi.org/10.1016/j.jff.2014.10.026
        • Riso P.
        • Klimis-Zacas D.
        • Del Bo C.
        • Martini D.
        • Campolo J.
        • Vendrame S.
        • et al.
        Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors.
        Eur J Nutr. 2013; 52: 949-961https://doi.org/10.1007/s00394-012-0402-9
        • Mertens-Talcott S.U.
        • Rios J.
        • Jilma-Stohlawetz P.
        • Pacheco-Palencia L.A.
        • Meibohm B.
        • Talcott S.T.
        • et al.
        Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich açai juice and pulp (Euterpe oleraceae Mart.) in human healthy volunteers.
        J Agric Food Chem. 2008; 56: 7796-7802https://doi.org/10.1021/jf8007037
        • Jensen G.S.
        • Wu X.
        • Patterson K.M.
        • Barnes J.
        • Carter S.G.
        • Scherwitz L.
        • et al.
        In vitro and in vivo antioxidant and anti-inflammatory capacities of an antioxidant-rich fruit and berry juice blend. Results of a pilot and randomized, double-blinded, placebo-controlled, crossover study.
        J Agric Food Chem. 2008; 56: 8326-8333https://doi.org/10.1021/jf8016157
        • Barbosa P.O.
        • Pala D.
        • Silva C.T.
        • e Souza M.O.
        • do Amaral J.F.
        • Vieira R.A.
        • et al.
        Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women.
        Nutrition. 2016; 32: 674-680https://doi.org/10.1016/j.nut.2015.12.030
        • Pala D.
        • Barbosa P.O.
        • Silva C.T.
        • de Souza M.O.
        • Freitas F.R.
        • Volp A.C.P.
        • et al.
        Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: a prospective study in women.
        Clin Nutr. 2018; 37: 618-623https://doi.org/10.1016/j.clnu.2017.02.001
        • Cardoso A.L.
        • Di Pietro P.F.
        • Vieira F.G.K.
        • Boaventura B.C.B.
        • de Liz S.
        • Borges G.S.C.
        • et al.
        Acute consumption of juçara juice (Euterpe edulis) and antioxidant activity in healthy individuals.
        J Funct Foods. 2015; 17: 152-162https://doi.org/10.1016/j.jff.2015.05.014
        • Copetti C.L.K.
        • Orssatto L.B.R.
        • Diefenthaeler F.
        • Silveira T.T.
        • Silva E.L.
        • Liz S.
        • et al.
        Acute effect of juçara juice (Euterpe edulis Martius) on oxidative stress biomarkers and fatigue in a high-intensity interval training session: a single-blind cross-over randomized study.
        J Funct Foods. 2020; 67: 103835https://doi.org/10.1016/j.jff.2020.103835
        • Association of Official Analytical Chemists
        Official methods of analysis. vol. 18a. 2005 (Washington, DC)
        • Rizelio V.M.
        • Tenfen L.
        • da Silveira R.
        • Gonzaga L.V.
        • Costa A.C.O.
        • Fett R.
        Development of a fast capillary electrophoresis method for determination of carbohydrates in honey samples.
        Talanta. 2012; 93: 62-66https://doi.org/10.1016/j.talanta.2012.01.034
        • Rufino M.S.M.
        • Alves R.E.
        • de Brito E.S.
        • Pérez-Jiménez J.
        • Saura-Calixto F.
        • Mancini-Filho J.
        Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brazil.
        Food Chem. 2010; 121: 996-1002https://doi.org/10.1016/j.foodchem.2010.01.037
        • Singleton V.L.
        • Rossi J.A.
        Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents.
        Am J Enol Vitic. 1965; 16: 144-158
        • Brand-Williams W.
        • Cuvelier M.E.
        • Berset C.
        Use of free radical method to evaluate antioxidant activity.
        LWT - Food Sci Technol (Lebensmittel-Wissenschaft -Technol). 1995; 28: 25-30https://doi.org/10.1016/S0023-6438(95)80008-5
        • Benzie I.F.F.
        • Strain J.J.
        The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay.
        Anal Biochem. 1996; 239: 70-76https://doi.org/10.1006/abio.1996.0292
        • Borges G.S.C.
        • Vieira F.G.K.
        • Copetti C.
        • Gonzaga L.V.
        • Fett R.
        Optimization of the extraction of flavanols and anthocyanins from the fruit pulp of Euterpe edulis using the response surface methodology.
        Food Res Int. 2011; 44: 708-715https://doi.org/10.1016/j.foodres.2010.12.025
        • Giusti M.M.
        • Wrolstad R.E.
        Anthocyanins: characterization and measurement with UV-visible spectroscopy.
        in: Wrolstald R.E. Current protocols in food analytical chemistry. JohnWiley and Sons, NewYork2001https://doi.org/10.1002/0471142913.faf0102s00
        • Strohecker R.
        • Henning H.M.
        Análisis de vitaminas: Métodos comprovados.
        Paz Montalvo, Madrid1967: 428p
        • Brasil Ministério da Saúde
        Orientações para a coleta e análise de dados antropométricos em serviços de saúde: Norma Técnica do Sistema de Vigilância Alimentar e Nutricional – SISVAN. Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Atenção Básica.
        Ministério da Saúde, Brasília2011: 76p
        • World Health Organization
        The World Health Report: working together for health.
        World Health Organization, Geneva2006
        • Pinheiro A.B.V.
        • Lacerda E.M.A.
        • Benzecry E.H.
        • Gomes M.C.S.
        • Costa V.M.
        Tabela para avaliação de consumo alimentar em medidas caseiras.
        5 ed. Atheneu, Rio de Janeiro2005
        • Bombem K.C.M.
        • Canella D.S.
        • Bandoni D.H.
        • Jaime P.C.
        Manual de medidas caseiras e receitas para cálculos dietéticos.
        São Paulo: M. Books, 2012
        • Wendel A.
        Glutatione peroxidase.
        Methods Enzymol. 1981; 77: 325-333https://doi.org/10.1016/s0076-6879(81)77046-0
        • Johansson L.H.
        • Borg L.A.
        A spectofotometric method for determination of catalase activity in small tissue samples.
        Anal Biochem. 1988; 174: 331-336https://doi.org/10.1016/0003-2697(88)90554-4
        • Peskin A.V.
        • Winterbourn C.C.
        A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1).
        Clin Chim Acta. 2000; 293: 157-166https://doi.org/10.1016/s0009-8981(99)00246-6
        • Erel O.
        A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation.
        Clin Biochem. 2004; 37: 277-285https://doi.org/10.1016/j.clinbiochem.2003.11.015
        • Erel O.
        A new automated colorimetric method for measuring total oxidant status.
        Clin Biochem. 2005; 38: 1103-1111https://doi.org/10.1016/j.clinbiochem.2005.08.008
        • CingiYirün M.
        • Ünal K.
        • AltunsoyŞen N.
        • Yirün O.
        • Aydemir Ç.
        • Göka E.
        Evaluation of oxidative stress in bipolar disorder in terms of total oxidant status, total antioxidant status, and oxidative stress index.
        Arch Neuropsychiatry. 2016; 53: 194-198https://doi.org/10.5152/npa.2015.10123
        • Friedewald W.T.
        • Levy R.I.
        • Fredrickson D.S.
        Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.
        Clin Chem. 1972; 18: 499-502
        • Cavalcante L.S.
        • Silva E.L.
        Application of a modified precipitation method for the measurement of small dense LDL-cholesterol (sd-LDL-c) in a population in southern Brazil.
        Clin Chem Lab Med. 2012; 50: 1649-1656https://doi.org/10.1515/cclm-2011-0797
        • Browner W.S.
        • Newman T.B.
        • Hulley S.B.
        Estimando o tamanho de amostra e o poder estatístico: aplicações e exemplos.
        in: Delineando a pesquisa clínica: uma abordagem epidemiológica; Hulley SB (Coord.). Artmed, Porto Alegre2008: p83-p112
        • Willett W.
        • Stamper M.
        Implications of total energy intake for epidemiologic analyses.
        in: Willett W. Nutritional epidemiology. Oxford University Press, New York1998: 514p
        • Chong M.F.F.
        • Macdonald R.
        • Lovegrove J.A.
        Fruit polyphenols and CVD risk: a review of human intervention studies.
        Br J Nutr. 2010; 104: S28-S39https://doi.org/10.1017/S0007114510003922
        • Nowak D.
        • Grąbczewska Z.
        • Gośliński M.
        • Obońska K.
        • Dąbrowska A.
        • Kubica J.
        Effect of chokeberry juice consumption on antioxidant capacity, lipids profile and endothelial function in healthy people: a pilot study.
        Czech J Food Sci. 2016; 34: 39-46https://doi.org/10.17221/258/2015-CJFS
        • Kruger M.J.
        • Davies N.
        • Myburgh K.H.
        • Lecour S.
        Proanthocyanidins, anthocyanins and cardiovascular diseases.
        Food Res Int. 2014; 59: 41-52https://doi.org/10.1016/j.foodres.2014.01.046
        • Nile S.H.
        • Park S.W.
        Edible berries: bioactive components and their effect on human health.
        Nutrition. 2014; 30: 134-144https://doi.org/10.1016/j.nut.2013.04.007
        • Erlund I.
        • Koli R.
        • Alfthan G.
        • Marniemi J.
        • Puukka P.
        • Mustonen P.
        • et al.
        Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol.
        Am J Clin Nutr. 2008; 87: 323-331https://doi.org/10.1093/ajcn/87.2.323
        • Joris P.J.
        • Mensink R.P.
        Role of cis-monounsaturated fatty acids in the prevention of coronary heart disease.
        Curr Atherosclerosis Rep. 2016; 18: 38https://doi.org/10.1007/s11883-016-0597-y