The effect of caloric restriction on blood pressure and cardiovascular function: A systematic review and meta-analysis of randomized controlled trials

      Summary

      Background & aims

      Preclinical evidence suggests that caloric restriction is an effective therapy for a number of cardiovascular insults. Whether caloric restriction has cardio-protective effects in humans is not well understood. The aim was to systematically review and meta-analyze human randomized control trials (RCTs) testing the effect of caloric restriction on blood pressure (BP) and cardiovascular function.

      Methods

      A systematic review was performed using Medline, EMBASE, CINAHL (up to June 2017) to search for RCTs of adults receiving a calorie-restricted intervention versus a control/standard diet. Random-effect meta-analyses were performed to calculate weighted mean difference and 95% CI.

      Results

      Thirty-two RCTs with 1722 participants assessing BP (n = 29 studies), heart rate (n = 10), VO2peak (n = 8), muscle sympathetic nerve activity (MSNA, n = 4), and endothelial function (n = 4) were included. Calorie-restricted interventions lasting 1–4 weeks had the largest effect on systolic (−5.5 mmHg, p < 0.001, 95% CI: −3.8, −7.1) and diastolic (−2.9 mmHg, p = 0.005, 95% CI: −5.0, −0.9) BP, but no effect on HR. Interventions lasting 1.5–6 months had similar effects on BP, and reduced HR (−4.4 beats/minute, p < 0.001, 95% CI: −6.1,-2.8). Relative VO2peak improved (1.8 mL/kg/min, p < 0.001, 95% CI: 1.3, 2.2). There were also potential positive effects on MSNA and endothelial function.

      Conclusions

      The effect of 1–4 weeks of calorie restriction on BP was similar to that expected with medications, and larger than that reported for other lifestyle interventions or supplements. Cardiovascular risk could be further reduced by caloric restriction lasting up to six months to lower heart rate and improve VO2peak.

      Keywords

      Abbreviations:

      SBP (systolic blood pressure), DBP (diastolic blood pressure), MSNA (muscle sympathetic nerve activity), VO2peak (peak oxygen consumption), WMD (weighted mean difference), CI (confidence intervals), RCT (randomized control trials)
      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Redman L.M.
        • Ravussin E.
        Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes.
        Antioxidants Redox Signal. 2011; 14: 275-287
        • Keenan K.P.
        • Ballam G.C.
        • Dixit R.
        • Soper K.A.
        • Laroque P.
        • Mattson B.A.
        • et al.
        The effects of diet, overfeeding and moderate dietary restriction on Sprague-Dawley rat survival, disease and toxicology.
        J Nutr. 1997; 4: 851S-856S
        • Deaton C.
        • Froelicher E.S.
        • Wu L.H.
        • Ho C.
        • Shishani K.
        • Jaarsma T.
        The global burden of cardiovascular disease.
        Eur J Cardiovasc Nurs. 2017; 10: S5-S13
        • Colman R.J.
        • Anderson R.M.
        • Johnson S.C.
        • Kastman E.K.
        • Kosmatka K.J.
        • Beasley T.M.
        • et al.
        Caloric restriction delays disease onset and mortality in rhesus monkeys.
        Science. 2009; 325: 201-204
        • Sheng Y.
        • Lv S.
        • Huang M.
        • Lv Y.
        • Yu J.
        • Liu J.
        • et al.
        Opposing effects on cardiac function by calorie restriction in different-aged mice.
        Aging Cell. 2017; 16: 1155-1167
        • Ruiz-Hurtado G.
        • García-Prieto C.F.
        • Pulido-Olmo H.
        • Velasco-Martín J.P.
        • Villa-Valverde P.
        • Fernández-Valle M.E.
        • et al.
        Mild and short-term caloric restriction prevents obesity-induced cardiomyopathy in young zucker rats without changing in metabolites and fatty acids cardiac profile.
        Front Physiol. 2017; 8: 215-310https://doi.org/10.3389/fphys.2017.00042
        • de Lucia C.
        • Gambino G.
        • Petraglia L.
        • Elia A.
        • Komici K.
        • Femminella G.D.
        • et al.
        Long-term caloric restriction improves cardiac function, remodeling, adrenergic responsiveness, and sympathetic innervation in a model of postischemic heart failure.
        Circ Cardiovasc Imag. 2018; 11: 9S-12S
        • Kawaguchi T.
        • Takemura G.
        • Kanamori H.
        • Takeyama T.
        • Watanabe T.
        • Morishita K.
        • et al.
        Prior starvation mitigates acute doxorubicin cardiotoxicity through restoration of autophagy in affected cardiomyocytes.
        Cardiovasc Res. 2012; 96: 456-465
        • Mitra M.S.
        • Donthamsetty S.
        • White B.
        • Latendresse J.R.
        • Mehendale H.M.
        Mechanism of protection of moderately diet restricted rats against doxorubicin-induced acute cardiotoxicity.
        Toxicol Appl Pharmacol. 2007; 225: 90-101
        • Ahmet I.
        • Tae H.-J.
        • de Cabo R.
        • Lakatta E.G.
        • Talan M.I.
        Effects of calorie restriction on cardioprotection and cardiovascular health.
        J Mol Cell Cardiol. 2011; 51: 263-271
        • Han X.-F.
        • Ren J.
        Caloric restriction and heart function: is there a sensible link?.
        Acta Pharmacol Sin. 2010; 31 (Nature Publishing Group): 1111-1117
        • Mattson M.P.
        • Wan R.
        Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems.
        J Nutr Biochem. 2005; 16: 129-137
        • Dolinsky V.W.
        • Dyck J.R.B.
        Calorie restriction and resveratrol in cardiovascular health and disease.
        Biochim Biophys Acta. 2011; 1812: 1477-1489
        • Bales C.W.
        • Kraus W.E.
        Caloric restriction: implications for human cardiometabolic health.
        J Cardpulm Rehabil Prev. 2013; 33: 201-208
      1. ([Internet])Higgins J.P.T. Green S. Cochrane handbook for systematic reviews of interventions. 5 ed. The Cochrane Collaboration, 2011 (Available from:)
        • Higgins J.P.T.
        • Thompson S.G.
        • Deeks J.J.
        • Altman D.G.
        Measuring inconsistency in meta-analyses.
        Br Med J Pub Group. 2003; 327: 557-560
        • Adachi T.
        • Kawamura M.
        • Hiramori K.
        Relationships between reduction in body weight and reduction in blood pressure and improvement of glucose and lipid metabolism induced by short-term calorie restriction in overweight hypertensive women.
        Hypertens Res. 1996; 19: S57-S60
        • Andersson B.
        • Elam M.
        • Wallin B.G.
        • Bjorntorp P.
        • Andersson O.K.
        Effect of energy-restricted diet on sympathetic muscle nerve activity in obese women.
        Hypertension. 1991; 18: 783-789
        • Bouchonville M.
        • Armamento-Villareal R.
        • Shah K.
        • Napoli N.
        • Sinacore D.R.
        • Qualls C.
        • et al.
        Weight loss, exercise or both and cardiometabolic risk factors in obese older adults: results of a randomized controlled trial.
        Int J Obes. 2014; 38 (Nature Publishing Group): 423-431
        • Brekke H.K.
        • Bertz F.
        • Rasmussen K.M.
        • Bosaeus I.
        • Ellegård L.
        • Winkvist A.
        Diet and exercise interventions among overweight and obese lactating women: randomized trial of effects on cardiovascular risk factors.
        PloS One. 2014; 9e88250
        • Buchowski M.S.
        • Hongu N.
        • Acra S.
        • Wang L.
        • Warolin J.
        • Roberts L.J.
        Effect of modest caloric restriction on oxidative stress in women, a randomized trial.
        PloS One. 2012; 7e47079
        • Choi K.M.
        • Han K.A.
        • Ahn H.J.
        • Lee S.Y.
        • Hwang S.Y.
        • Kim B.-H.
        • et al.
        The effects of caloric restriction on Fetuin-A and cardiovascular risk factors in rats and humans: a randomized controlled trial.
        Clin Endocrinol. 2013; 79: 356-363
        • Christensen P.
        • Frederiksen R.
        • Bliddal H.
        • Riecke B.F.
        • Bartels E.M.
        • Henriksen M.
        • et al.
        Comparison of three weight maintenance programs on cardiovascular risk, bone and vitamins in sedentary older adults.
        Obesity. 2013; 21: 1982-1990
        • Cox K.L.
        • Puddey I.B.
        • Morton A.R.
        • Burke V.
        • Beilin L.J.
        • McAleer M.
        Exercise and weight control in sedentary overweight men: effects on clinic and ambulatory blood pressure.
        J Hypertens. 1996; 14: 779-790
        • Dansinger M.L.
        • Gleason J.A.
        • Griffith J.L.
        • Selker H.P.
        • Schaefer E.J.
        Comparison of the Atkins, Ornish, Weight watchers, and Zone diets for weight loss and heart disease risk reduction.
        J Am Med Assoc. 2005; 293: 43-53
        • Ebbeling C.B.
        • Leidig M.M.
        • Sinclair K.B.
        • Seger-Shippee L.G.
        • Feldman H.A.
        • Ludwig D.S.
        Effects of an ad libitum low-glycemic load diet on cardiovascular disease risk factors in obese young adults.
        Am J Clin Nutr. 2005; 81 (2nd ed.): 976-982
        • Fernandes J.F.R.
        • Araújo L.D.S.
        • Kaiser S.E.
        • Sanjuliani A.F.
        • Klein M.R.S.T.
        The effects of moderate energy restriction on apnoea severity and CVD risk factors in obese patients with obstructive sleep apnoea.
        Br J Nutr. 2015; 114: 2022-2031
        • Fontana L.
        • Villareal D.T.
        • Weiss E.P.
        • Racette S.B.
        • Steger-May K.
        • Klein S.
        • et al.
        Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial.
        Am J Physiol Endocrinol Metab. 2007; 293: E197-E202
        • Fortmann S.P.
        • Haskell W.L.
        • Wood P.D.
        Effects of weight loss on clinic and ambulatory blood pressure in normotensive men.
        Am J Cardiol. 1988; 62: 89-93
        • Jensen P.
        • Zachariae C.
        • Christensen R.
        • Geiker N.R.W.
        • Schaadt B.K.
        • Stender S.
        • et al.
        Effect of weight loss on the cardiovascular risk profile of obese patients with psoriasis.
        Acta Derm Venereol. 2014; 94: 691-694
        • Kawamura M.
        • Adachi T.
        • Nakajima J.
        • Fujiwara T.
        • Hiramori K.
        Factors that affect calorie-sensitive and calorie-insensitive reduction in blood pressure during short-term calorie restriction in overweight hypertensive women.
        Hypertension. 1996; 27: 408-413
        • Hypertension Prevention Trial Research Group
        The hypertension prevention trial: three-year effects of dietary changes on blood pressure. Hypertension prevention trial research group.
        Arch Intern Med. 1990; 150: 153-162
        • Kitzman D.W.
        • Brubaker P.
        • Morgan T.
        • Haykowsky M.
        • Hundley G.
        • Kraus W.E.
        • et al.
        Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial.
        J Am Med Assoc. 2016; 315: 36-46
        • Larson-Meyer D.E.
        • Redman L.
        • Heilbronn L.K.
        • Martin C.K.
        • Ravussin E.
        Caloric restriction with or without exercise.
        Med Sci Sports Exerc. 2010; 42: 152-159
        • Lefevre M.
        • Redman L.M.
        • Heilbronn L.K.
        • Smith J.V.
        • Martin C.K.
        • Rood J.C.
        • et al.
        Caloric restriction alone and with exercise improves CVD risk in healthy non-obese individuals.
        Atherosclerosis. 2009; 203: 206-213
        • Li C.
        • Sadraie B.
        • Steckhan N.
        • Kessler C.
        • Stange R.
        • Jeitler M.
        • et al.
        Effects of a one-week fasting therapy in patients with type-2 diabetes mellitus and metabolic syndrome- A randomized controlled explorative study.
        Exp Clin Endocrinol Diabetes. 2017; 125: 618-624
        • Mori T.A.
        • Burke V.
        • Puddey I.B.
        • Shaw J.E.
        • Beilin L.J.
        Effect of fish diets and weight loss on serum leptin concentration in overweight, treated-hypertensive subjects.
        J Hypertens. 2004; 22: 1983-1990
        • Pierce G.L.
        • Beske S.D.
        • Lawson B.R.
        • Southall K.L.
        • Benay F.J.
        • Donato A.J.
        • et al.
        Weight loss alone improves conduit and resistance artery endothelial function in young and older overweight/obese adults.
        Hypertension. 2008; 52 ([Internet]) (Available from:): 72-79
        • Polovina S.
        • Micic D.
        The influence of diet with reduction in calorie intake on metabolic syndrome parameters in obese subjects with impaired glucose tolerance.
        Med Pregl. 2010; 63: 465-469
        • Pritchard J.E.
        • Nowson C.A.
        • Billington T.
        • Wark J.
        Benefits of a year-long workplace weight loss program on cardiovascular risk factors.
        Nutr Diet. 2002; 59: 87-96
        • Ross R.
        • Dagnone D.
        • Jones P.J.H.
        • Smith H.
        • Paddags A.
        • Hudson R.
        • et al.
        Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men: a randomized, controlled trial.
        Ann Intern Med. 2000; 133: 92-103
        • Ruggenenti P.
        • Abbate M.
        • Ruggiero B.
        • Rota S.
        • Trillini M.
        • Aparicio C.
        • et al.
        Renal and systemic effects of calorie restriction in patients with type 2 diabetes with abdominal obesity: a randomized controlled trial.
        Diabetes. 2017; 66: 75-86
        • Salinardi T.C.
        • Batra P.
        • Roberts S.B.
        • Urban L.E.
        • Robinson L.M.
        • Pittas A.G.
        • et al.
        Lifestyle intervention reduces body weight and improves cardiometabolic risk factors in worksites.
        Am J Clin Nutr. 2013; 97 (10): 667-676
        • Straznicky N.E.
        • Lambert E.A.
        • Nestel P.J.
        • McGrane M.T.
        • Dawood T.
        • Schlaich M.P.
        • et al.
        Sympathetic neural adaptation to hypocaloric diet with or without exercise training in obese metabolic syndrome subjects.
        Diabetes. 2010; 59: 71-79
        • Straznicky N.E.
        • Grima M.T.
        • Lambert E.A.
        • Eikelis N.
        • Dawood T.
        • Lambert G.W.
        • et al.
        Exercise augments weight loss induced improvement in renal function in obese metabolic syndrome individuals.
        J Hypertens. 2011; 29: 553-564
        • Straznicky N.E.
        • Lambert E.A.
        • Grima M.T.
        • Eikelis N.
        • Nestel P.J.
        • Dawood T.
        • et al.
        The effects of dietary weight loss with or without exercise training on liver enzymes in obese metabolic syndrome subjects.
        Diabetes Obes Metabol. 2012; 14: 139-148
        • Teng N.I.M.F.
        • Shahar S.
        • Rajab N.F.
        • Manaf Z.A.
        • Johari M.H.
        • Ngah W.Z.W.
        Improvement of metabolic parameters in healthy older adult men following a fasting calorie restriction intervention.
        Aging Male. 2013; 16 ([Internet]) (Available from:): 177-183
        • Trepanowski J.F.
        • Kroeger C.M.
        • Barnosky A.
        • Klempel M.C.
        • Bhutani S.
        • Hoddy K.K.
        • et al.
        Effect of alternate-day fasting on weight loss, weight maintenance, and cardioprotection among metabolically healthy obese adults.
        JAMA Intern Med. 2017; 177: 930-939
        • Utter A.C.
        • Nieman D.C.
        • Shannonhouse E.M.
        • Butterworth D.E.
        • Nieman C.N.
        Influence of diet and/or exercise on body composition and cardiorespiratory fitness in obese women.
        Int J Sport Nutr Exerc Metabol. 1998; 8: 213-222
        • Velthuis-te Wierik E.J.
        • Hoogzaad L.V.
        • van den Berg H.
        • Schaafsma G.
        Effects of moderate energy restriction on physical performance and substrate utilization in non-obese men.
        Int J Sports Med. 1994; 15: 478-484
        • Villareal D.T.
        • Chode S.
        • Parimi N.
        • Sinacore D.R.
        • Hilton T.
        • Armamento-Villareal R.
        • et al.
        Weight loss, exercise, or both and physical function in obese older adults.
        N Engl J Med. 2011; 364: 1218-1229
        • Kannel W.B.
        • Kannel C.
        • Paffenbarger R.S.
        • Cupples L.A.
        Heart rate and cardiovascular mortality: the Framingham Study.
        Am Heart J. 1987; 113: 1489-1494
        • Steg P.G.
        • Ferrari R.
        • Ford I.
        • Greenlaw N.
        • Tardif J.-C.
        • Tendera M.
        • et al.
        For the CLARIFY Investigators. Heart rate and use of beta-blockers in stable outpatients with coronary artery disease.
        PloS One. 2012; 7: e36284-e36288
        • Fox K.
        • Borer J.S.
        • Camm A.J.
        • Danchin N.
        • Ferrari R.
        • Lopez Sendon J.L.
        • et al.
        Resting heart rate in cardiovascular disease.
        J Am Coll Cardiol. 2007; 50: 823-830
        • Casey Jr., D.E.
        • Thomas R.J.
        • Bhalla V.
        • Commodore-Mensah Y.
        • Heidenreich P.A.
        • Kolte D.
        • et al.
        2019 AHA/ACC clinical performance and quality measures for adults with high blood pressure: a report of the American College of Cardiology/American heart association task force on performance measures.
        Circ Cardiovasc Qual Outcomes. 2019; 12 (248–8)
        • Law M.R.
        Value of low dose combination treatment with blood pressure lowering drugs: analysis of 354 randomised trials.
        BMJ. 2003; 326: 1427
        • Stamler J.
        • Stamler R.
        • Neaton J.D.
        Blood pressure, systolic and diastolic, and cardiovascular risks. US population data.
        Arch Intern Med. 1993; 153: 598-615
        • Stamler J.
        • Rose G.
        • Stamler R.
        • Elliott P.
        • Dyer A.
        • Marmot M.
        INTERSALT study findings. Public health and medical care implications.
        Hypertension. 1989; 14: 570-577
        • Dickinson H.O.
        • Mason J.M.
        • Nicolson D.J.
        • Campbell F.
        • Beyer F.R.
        • Cook J.V.
        • et al.
        Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials.
        J Hypertens. 2006; 24: 215-233
        • Neter J.E.
        • Stam B.E.
        • Kok F.J.
        • Grobbee D.E.
        • Geleijnse J.M.
        Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials.
        Hypertension. 2003; 42: 878-884
        • Donnelly J.E.
        • Blair S.N.
        • Jakicic J.M.
        • Manore M.M.
        • Rankin J.W.
        • Smith B.K.
        2009. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults.
        Med Sci Sports Exerc. 2009; 41: 459-471https://doi.org/10.1249/MSS.0b013e3181949333
        • Hart E.C.
        • Joyner M.J.
        • Wallin B.G.
        • Charkoudian N.
        Sex, ageing and resting blood pressure: gaining insights from the integrated balance of neural and haemodynamic factors.
        J Physiol. 2012; 590: 2069-2079
        • Aspenes S.T.
        • Nilsen T.I.L.
        • Skaug E.-A.
        • Bertheussen G.F.
        • Ellingsen Ø.
        • Vatten L.
        • et al.
        Peak oxygen uptake and cardiovascular risk factors in 4631 healthy women and men.
        Med Sci Sports Exerc. 2011; 43: 1465-1473
        • Blair S.N.
        • Kampert J.B.
        • Kohl H.W.
        • Barlow C.E.
        • Macera C.A.
        • Paffenbarger R.S.
        • et al.
        Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women.
        J Am Med Assoc. 1996; 276: 205-210
        • Ozemek C.
        • Laddu D.R.
        • Lavie C.J.
        • Claeys H.
        • Kaminsky L.A.
        • Ross R.
        • et al.
        An update on the role of cardiorespiratory fitness, structured exercise and lifestyle physical activity in preventing cardiovascular disease and health risk.
        Prog Cardiovasc Dis. 2018; 61: 484-490
        • Hoppeler H.
        • Weibel E.R.
        Structural and functional limits for oxygen supply to muscle.
        Acta Physiol Scand. 2000; 168: 445-456
        • Cioffi I.
        • Evangelista A.
        • Ponzo V.
        • Ciccone G.
        • Soldati L.
        • Santarpia L.
        • et al.
        Intermittent versus continuous energy restriction on weight loss and cardiometabolic outcomes: a systematic review and meta-analysis of randomized controlled trials.
        J Transl Med. 2018; 16: 7-16
        • Kirkham A.A.
        • Paterson D.I.
        • Prado C.M.
        • Mackey J.R.
        • Courneya K.S.
        • Pituskin E.
        • et al.
        Rationale and design of the Caloric Restriction and Exercise protection from Anthracycline Toxic Effects (CREATE) study: a 3-arm parallel group phase II randomized controlled trial in early breast cancer.
        BMC Canc. 2018; 18: 864
        • Mazidi M.
        • Katsiki N.
        • Mikhailidis D.P.
        • Sattar N.
        • Banach M.
        Lower carbohydrate diets and all-cause and cause-specific mortality: a population-based cohort study and pooling of prospective studies.
        Eur Heart J. 2019; 40: 2870-2879
        • Banach M.
        • Mikhailidis D.P.
        • Mazidi M.
        Low-carbohydrate diet: forget restriction, replace with balance!.
        Eur Heart J. 2020; 41: 1058