Zinc deficiency leads to reduced interleukin-2 production by active gene silencing due to enhanced CREMα expression in T cells

  • Veronika Kloubert
    Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
    Search for articles by this author
  • Inga Wessels
    Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
    Search for articles by this author
  • Jana Wolf
    Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
    Search for articles by this author
  • Karoline Blaabjerg
    Department of Animal Science – Animal Nutrition and Physiology, Aarhus University/Foulum, Blichers Allé 20, 8830, Tjele, Denmark
    Search for articles by this author
  • Veerle Janssens
    Laboratory of Protein Phosphorylation & Proteomics, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven & LKI (Leuven Cancer Institute, KU Leuven), Leuven, Belgium
    Search for articles by this author
  • Jan Hapala
    Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany

    Institute of Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
    Search for articles by this author
  • Wolfgang Wagner
    Helmholtz Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074, Aachen, Germany

    Institute of Biomedical Engineering, Department of Cell Biology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
    Search for articles by this author
  • Lothar Rink
    Corresponding author.
    Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
    Search for articles by this author
Published:October 29, 2020DOI:https://doi.org/10.1016/j.clnu.2020.10.052


      Background & aims

      The micronutrient zinc is essential for proper immune function. Consequently, zinc deficiency leads to impaired immune function, as seen in decreased secretion of interleukin (IL)-2 by T cells. Although this association has been known since the late 1980s, the underlying molecular mechanisms are still unknown. Zinc deficiency and reduced IL-2 levels are especially found in the elderly, which in turn are prone to chronic diseases. Here, we describe a new molecular link between zinc deficiency and reduced IL-2 expression in T cells.


      The effects of zinc deficiency were first investigated in vitro in the human T cell lines Jurkat and Hut-78 and complemented by in vivo data from zinc-supplemented pigs. A short- and long-term model for zinc deficiency was established. Zinc levels were detected by flow cytometry and expression profiles were investigated on the mRNA and protein level.


      The expression of the transcription factor cAMP-responsive-element modulator α (CREMα) is increased during zinc deficiency in vitro, due to increased protein phosphatase 2A (PP2A) activity, resulting in decreased IL-2 production. Additionally, zinc supplementation in vivo reduced CREMα levels causing increased IL-2 expression. On epigenetic levels increased CREMα binding to the IL-2 promoter is mediated by histone deacetylase 1 (HDAC1). The HDAC1 activity is inhibited by zinc. Moreover, deacetylation of the activating histone mark H3K9 was increased under zinc deficiency, resulting in reduced IL-2 expression.


      With the transcription factor CREMα a molecular link was uncovered, connecting zinc deficiency with reduced IL-2 production due to enhanced PP2A and HDAC1 activity.

      Graphical abstract


      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Kim H.P.
        • Imbert J.
        • Leonard W.J.
        Both integrated and differential regulation of components of the IL-2/IL-2 receptor system.
        Cytokine Growth Factor Rev. 2006; 17: 349-366https://doi.org/10.1016/j.cytogfr.2006.07.003
        • Bayer A.L.
        • Pugliese A.
        • Malek T.R.
        The IL-2/IL-2R system: from basic science to therapeutic applications to enhance immune regulation.
        Immunol Res. 2013; 57: 197-209https://doi.org/10.1007/s12026-013-8452-5
        • Delmas V.
        • Laoide B.M.
        • Masquilier D.
        • de Groot R.P.
        • Foulkes N.S.
        • Sassone-Corsi P.
        Alternative usage of initiation codons in mRNA encoding the cAMP-responsive-element modulator generates regulators with opposite functions.
        Proc Natl Acad Sci U S A. 1992; 89: 4226-4230https://doi.org/10.1073/pnas.89.10.4226
        • Tenbrock K.
        • Tsokos G.C.
        Transcriptional regulation of interleukin 2 in SLE T cells.
        Int Rev Immunol. 2004; 23: 333-345https://doi.org/10.1080/08830180490452558
        • Sahebari M.
        • Abrishami-Moghaddam M.
        • Moezzi A.
        • Ghayour-Mobarhan M.
        • Mirfeizi Z.
        • Esmaily H.
        • et al.
        Association between serum trace element concentrations and the disease activity of systemic lupus erythematosus.
        Lupus. 2014; 23: 793-801https://doi.org/10.1177/0961203314530792
        • Tóth C.N.
        • Baranyai E.
        • Csípő I.
        • Tarr T.
        • Zeher M.
        • Posta J.
        • et al.
        Elemental analysis of whole and protein separated blood serum of patients with systemic lupus erythematosus and sjögren’s syndrome.
        Biol Trace Elem Res. 2017; 179: 14-22https://doi.org/10.1007/s12011-017-0945-y
        • Yilmaz A.
        • Sari R.A.
        • Gundogdu M.
        • Kose N.
        • Dag E.
        Trace elements and some extracellular antioxidant proteins levels in serum of patients with systemic lupus erythematosus.
        Clin Rheumatol. 2005; 24: 331-335https://doi.org/10.1007/s10067-004-1028-y
        • Kyttaris V.C.
        • Wang Y.
        • Juang Y.T.
        • Weinstein A.
        • Tsokos G.C.
        CAMP response element modulator a expression in patients with systemic lupus erythematosus.
        Lupus. 2006; 15: 840-844https://doi.org/10.1177/0961203306069985
        • Solomou E.E.
        • Juang Y.T.
        • Gourley M.F.
        • Kammer G.M.
        • Tsokos G.C.
        Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus.
        J Immunol. 2001; 166: 4216-4222https://doi.org/10.4049/jimmunol.166.6.4216
        • Juang Y.-T.
        • Rauen T.
        • Wang Y.
        • Ichinose K.
        • Benedyk K.
        • Tenbrock K.
        • et al.
        Transcriptional activation of the cAMP-responsive modulator promoter in human T cells is regulated by protein phosphatase 2A-mediated dephosphorylation of SP-1 and reflects disease activity in patients with systemic lupus erythematosus.
        J Biol Chem. 2011; 286: 1795-1801https://doi.org/10.1074/jbc.M110.166785
        • Beck F.W.
        • Prasad A.S.
        • Kaplan J.
        • Fitzgerald J.T.
        • Brewer G.J.
        Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans.
        Am J Physiol. 1997; 272: E1002-E1007https://doi.org/10.1152/ajpendo.1997.272.6.E1002
        • Haase H.
        • Rink L.
        Functional significance of zinc-related signaling pathways in immune cells.
        Annu Rev Nutr. 2009; 29: 133-152https://doi.org/10.1146/annurev-nutr-080508-141119
        • Prasad A.S.
        • Meftah S.
        • Abdallah J.
        • Kaplan J.
        • Brewer G.J.
        • Bach J.F.
        • et al.
        Serum thymulin in human zinc deficiency.
        J Clin Invest. 1988; 82: 1202-1210https://doi.org/10.1172/JCI113717
        • Rink L.
        • Gabriel P.
        Zinc and the immune system.
        Proc Nutr Soc. 2000; 59: 541-552https://doi.org/10.1017/s0029665100000781
        • Vallee B.L.
        • Falchuk K.H.
        The biochemical basis of zinc physiology.
        Physiol Rev. 1993; 73: 79-118https://doi.org/10.1152/physrev.1993.73.1.79
        • Kloubert V.
        • Rink L.
        Zinc as a micronutrient and its preventive role of oxidative damage in cells.
        Food Funct. 2015; 6: 3195-3204https://doi.org/10.1039/c5fo00630a
        • Radtke F.
        • Heuchel R.
        • Georgiev O.
        • Hergersberg M.
        • Gariglio M.
        • Dembic Z.
        • et al.
        Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter.
        EMBO J. 1993; 12: 1355-1362
        • Daaboul D.
        • Rosenkranz E.
        • Uciechowski P.
        • Rink L.
        Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1β-induced IL-2 production in T-cells.
        Metallomics. 2012; 4: 1088-1097https://doi.org/10.1039/c2mt20118f
        • Prasad A.S.
        • Beck F.W.J.
        • Bao B.
        • Fitzgerald J.T.
        • Snell D.C.
        • Steinberg J.D.
        • et al.
        Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress.
        Am J Clin Nutr. 2007; 85: 837-844https://doi.org/10.1093/ajcn/85.3.837
        • Prasad A.S.
        • Beck F.W.
        • Kaplan J.
        • Chandrasekar P.H.
        • Ortega J.
        • Fitzgerald J.T.
        • et al.
        Effect of zinc supplementation on incidence of infections and hospital admissions in sickle cell disease (SCD).
        Am J Hematol. 1999; 61: 194-202https://doi.org/10.1002/(sici)1096-8652(199907)61:3<194::aid-ajh6>3.0.co;2-c
        • Tybirk P.
        • Sloth N.
        • Jørgensen L.
        Danish nutrient standards.
        Copenhagen, 2014
        • Kloubert V.
        • Blaabjerg K.
        • Dalgaard T.S.
        • Poulsen H.D.
        • Rink L.
        • Wessels I.
        Influence of zinc supplementation on immune parameters in weaned pigs.
        J Trace Elem Med Biol. 2018; 49: 231-240https://doi.org/10.1016/j.jtemb.2018.01.006
        • Mayer L.S.
        • Uciechowski P.
        • Meyer S.
        • Schwerdtle T.
        • Rink L.
        • Haase H.
        Differential impact of zinc deficiency on phagocytosis, oxidative burst, and production of pro-inflammatory cytokines by human monocytes.
        Metallomics. 2014; 6: 1288-1295https://doi.org/10.1039/c4mt00051j
        • Yui S.
        • Nakatani Y.
        • Hunter M.J.
        • Chazin W.J.
        • Yamazaki M.
        Implication of extracellular zinc exclusion by recombinant human calprotectin (MRP8 and MRP14) from target cells in its apoptosis-inducing activity.
        Mediat Inflamm. 2002; 11: 165-172https://doi.org/10.1080/09622935020138208
        • Haase H.
        • Ober-Blöbaum J.L.
        • Engelhardt G.
        • Hebel S.
        • Heit A.
        • Heine H.
        • et al.
        Zinc signals are essential for lipopolysaccharide-induced signal transduction in monocytes.
        J Immunol. 2008; 181: 6491-6502https://doi.org/10.4049/jimmunol.181.9.6491
        • Haase H.
        • Hebel S.
        • Engelhardt G.
        • Rink L.
        Flow cytometric measurement of labile zinc in peripheral blood mononuclear cells.
        Anal Biochem. 2006; 352: 222-230https://doi.org/10.1016/j.ab.2006.02.009
        • Krezel A.
        • Maret W.
        Zinc-buffering capacity of a eukaryotic cell at physiological pZn.
        J Biol Inorg Chem. 2006; 11: 1049-1062https://doi.org/10.1007/s00775-006-0150-5
        • Burdette S.C.
        • Walkup G.K.
        • Spingler B.
        • Tsien R.Y.
        • Lippard S.J.
        Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution.
        J Am Chem Soc. 2001; 123: 7831-7841https://doi.org/10.1021/ja010059l
        • Hönscheid A.
        • Dubben S.
        • Rink L.
        • Haase H.
        Zinc differentially regulates mitogen-activated protein kinases in human T cells.
        J Nutr Biochem. 2012; 23: 18-26https://doi.org/10.1016/j.jnutbio.2010.10.007
        • Hardyman J.E.J.
        • Tyson J.
        • Jackson K.A.
        • Aldridge C.
        • Cockell S.J.
        • Wakeling L.A.
        • et al.
        Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc.
        Metallomics. 2016; 8: 337-343https://doi.org/10.1039/c5mt00305a
        • Faneyte I.F.
        • Kristel P.M.
        • van de Vijver M.J.
        Determining MDR1/P-glycoprotein expression in breast cancer.
        Int J Canc. 2001; 93: 114-122https://doi.org/10.1002/1097-0215(20010701)93:1<114::aid-ijc1309>3.0.co;2-j
        • Dubben S.
        • Hönscheid A.
        • Winkler K.
        • Rink L.
        • Haase H.
        Cellular zinc homeostasis is a regulator in monocyte differentiation of HL-60 cells by 1 alpha,25-dihydroxyvitamin D3.
        J Leukoc Biol. 2010; 87: 833-844https://doi.org/10.1189/jlb.0409241
        • Leung K.W.
        • Liu M.
        • Xu X.
        • Seiler M.J.
        • Barnstable C.J.
        • Tombran-Tink J.
        Expression of ZnT and ZIP zinc transporters in the human RPE and their regulation by neurotrophic factors.
        Invest Ophthalmol Vis Sci. 2008; 49: 1221-1231https://doi.org/10.1167/iovs.07-0781
        • Overbeck S.
        • Uciechowski P.
        • Ackland M.L.
        • Ford D.
        • Rink L.
        Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9.
        J Leukoc Biol. 2008; 83: 368-380https://doi.org/10.1189/jlb.0307148
        • Krusche C.A.
        • Vloet A.J.
        • Classen-Linke I.
        • von Rango U.
        • Beier H.M.
        • Alfer J.
        Class I histone deacetylase expression in the human cyclic endometrium and endometrial adenocarcinomas.
        Hum Reprod. 2007; 22: 2956-2966https://doi.org/10.1093/humrep/dem241
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
        Methods. 2001; 25: 402-408https://doi.org/10.1006/meth.2001.1262
        • Ritchie M.E.
        • Phipson B.
        • Wu D.
        • Hu Y.
        • Law C.W.
        • Shi W.
        • et al.
        Limma powers differential expression analyses for RNA-sequencing and microarray studies.
        Nucleic Acids Res. 2015; 43: e47https://doi.org/10.1093/nar/gkv007
        • Elbers A.R.
        • Geudeke M.J.
        • van Rossem H.
        • Kroon M.C.
        • Counotte G.H.
        Haematology and biochemistry reference values for sows kept under modern management conditions.
        Vet Q. 1994; 16: 127-130https://doi.org/10.1080/01652176.1994.9694433
        • Rauen T.
        • Hedrich C.M.
        • Tenbrock K.
        • Tsokos G.C.
        cAMP responsive element modulator: a critical regulator of cytokine production.
        Trends Mol Med. 2013; 19: 262-269https://doi.org/10.1016/j.molmed.2013.02.001
        • Haberland M.
        • Montgomery R.L.
        • Olson E.N.
        The many roles of histone deacetylases in development and physiology: implications for disease and therapy.
        Nat Rev Genet. 2009; 10: 32-42https://doi.org/10.1038/nrg2485
        • Gammoh N.Z.
        • Rink L.
        Zinc in infection and inflammation.
        Nutrients. 2017; 9https://doi.org/10.3390/nu9060624
        • Haase H.
        • Rink L.
        Zinc signals and immune function.
        Biofactors. 2014; 40: 27-40https://doi.org/10.1002/biof.1114
        • Haase H.
        • Mazzatti D.J.
        • White A.
        • Ibs K.H.
        • Engelhardt G.
        • Hebel S.
        • et al.
        Differential gene expression after zinc supplementation and deprivation in human leukocyte subsets.
        Molecular Med (Cambridge, Mass. 2007; 13: 362-370https://doi.org/10.2119/2007–00049.Haase
        • Lowe N.M.
        • Fekete K.
        • Decsi T.
        Methods of assessment of zinc status in humans: a systematic review.
        Am J Clin Nutr. 2009; 89: 2040S-2051Shttps://doi.org/10.3945/ajcn.2009.27230G
        • Huang L.
        • Tepaamorndech S.
        The SLC30 family of zinc transporters - a review of current understanding of their biological and pathophysiological roles.
        Mol Aspect Med. 2013; 34: 548-560https://doi.org/10.1016/j.mam.2012.05.008
        • Yu M.
        • Lee W.-W.
        • Tomar D.
        • Pryshchep S.
        • Czesnikiewicz-Guzik M.
        • Lamar D.L.
        • et al.
        Regulation of T cell receptor signaling by activation-induced zinc influx.
        J Exp Med. 2011; 208: 775-785https://doi.org/10.1084/jem.20100031
        • Hojyo S.
        • Miyai T.
        • Fujishiro H.
        • Kawamura M.
        • Yasuda T.
        • Hijikata A.
        • et al.
        Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength.
        Proc Natl Acad Sci U S A. 2014; 111: 11786-11791https://doi.org/10.1073/pnas.1323557111
        • Maywald M.
        • Wessels I.
        • Rink L.
        Zinc signals and immunity.
        Int J Mol Sci. 2017; : 18https://doi.org/10.3390/ijms18102222
        • Prasad A.S.
        • Bao B.
        • Beck F.W.
        • Sarkar F.H.
        Zinc activates NF-kappaB in HUT-78 cells.
        J Lab Clin Med. 2001; 138: 250-256https://doi.org/10.1067/mlc.2001.118108
        • Bao B.
        • Prasad A.S.
        • Beck F.W.J.
        • Godmere M.
        Zinc modulates mRNA levels of cytokines.
        Am J Physiol Endocrinol Metab. 2003; 285: E1095-E1102https://doi.org/10.1152/ajpendo.00545.2002
        • Dawson H.D.
        A comparative assessment of the pig, mouse and human genomes.
        in: McAnulty P.A. Dayan A.D. Ganderup N.C. Hastings K.L. The minipig in biomedical research. CRC Press, Boca Raton, FL, USA2011: 323-342
        • Chen W.J.
        • Zhao C.Y.
        • Zheng T.L.
        Comparison of zinc contents in human serum and plasma.
        Clin Chim Acta. 1986; 155: 185-187https://doi.org/10.1016/0009-8981(86)90282-2
        • Folin M.
        • Contiero E.
        • Vaselli G.M.
        Zinc content of normal human serum and its correlation with some hematic parameters.
        Biometals. 1994; 7: 75-79https://doi.org/10.1007/bf00205198
        • Kosman D.J.
        • Henkin R.I.
        Plasma and serum zinc concentrations.
        Lancet. 1979; 1: 1410https://doi.org/10.1016/s0140-6736(79)92047-6
        • Vicart A.
        • Lefebvre T.
        • Imbert J.
        • Fernandez A.
        • Kahn-Perlès B.
        Increased chromatin association of Sp1 in interphase cells by PP2A-mediated dephosphorylations.
        J Mol Biol. 2006; 364: 897-908https://doi.org/10.1016/j.jmb.2006.09.036
        • Xiong Y.
        • Luo D.-J.
        • Wang X.-L.
        • Qiu M.
        • Yang Y.
        • Yan X.
        • et al.
        Zinc binds to and directly inhibits protein phosphatase 2A in vitro.
        Neurosci Bull. 2015; 31: 331-337https://doi.org/10.1007/s12264-014-1519-z
        • Tenbrock K.
        • Juang Y.-T.
        • Leukert N.
        • Roth J.
        • Tsokos G.C.
        The transcriptional repressor cAMP response element modulator alpha interacts with histone deacetylase 1 to repress promoter activity.
        J Immunol. 2006; 177: 6159-6164https://doi.org/10.4049/jimmunol.177.9.6159
        • Hedrich C.M.
        • Rauen T.
        • Tsokos G.C.
        cAMP-responsive element modulator (CREM)α protein signaling mediates epigenetic remodeling of the human interleukin-2 gene: implications in systemic lupus erythematosus.
        J Biol Chem. 2011; 286: 43429-43436https://doi.org/10.1074/jbc.M111.299339
        • Choudhary C.
        • Weinert B.T.
        • Nishida Y.
        • Verdin E.
        • Mann M.
        The growing landscape of lysine acetylation links metabolism and cell signalling.
        Nat Rev Mol Cell Biol. 2014; 15: 536-550https://doi.org/10.1038/nrm3841
        • Tschismarov R.
        • Firner S.
        • Gil-Cruz C.
        • Göschl L.
        • Boucheron N.
        • Steiner G.
        • et al.
        HDAC1 controls CD8+ T cell homeostasis and antiviral response.
        PloS One. 2014; 9e110576https://doi.org/10.1371/journal.pone.0110576
        • Göschl L.
        • Preglej T.
        • Hamminger P.
        • Bonelli M.
        • Andersen L.
        • Boucheron N.
        • et al.
        A T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis.
        J Autoimmun. 2018; 86: 51-61https://doi.org/10.1016/j.jaut.2017.09.008
        • Rosenkranz E.
        • Maywald M.
        • Hilgers R.-D.
        • Brieger A.
        • Clarner T.
        • Kipp M.
        • et al.
        Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration.
        J Nutr Biochem. 2016; 29: 116-123https://doi.org/10.1016/j.jnutbio.2015.11.010
        • Wang J.
        • Wen L.
        • Wang Y.
        • Chen F.
        Therapeutic effect of histone deacetylase inhibitor, sodium butyrate, on allergic rhinitis in vivo.
        DNA Cell Biol. 2016; 35: 203-208https://doi.org/10.1089/dna.2015.3037
        • Li C.
        • Guo S.
        • Gao J.
        • Guo Y.
        • Du E.
        • Lv Z.
        • et al.
        Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks.
        J Nutr Biochem. 2015; 26: 173-183https://doi.org/10.1016/j.jnutbio.2014.10.005
        • Murayama A.
        • Sakura K.
        • Nakama M.
        • Yasuzawa-Tanaka K.
        • Fujita E.
        • Tateishi Y.
        • et al.
        A specific CpG site demethylation in the human interleukin 2 gene promoter is an epigenetic memory.
        EMBO J. 2006; 25: 1081-1092https://doi.org/10.1038/sj.emboj.7601012
        • Rao S.
        • Procko E.
        • Shannon M.F.
        Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene.
        J Immunol. 2001; 167: 4494-4503https://doi.org/10.4049/jimmunol.167.8.4494
        • Ward S.B.
        • Hernandez-Hoyos G.
        • Chen F.
        • Waterman M.
        • Reeves R.
        • Rothenberg E.V.
        Chromatin remodeling of the interleukin-2 gene: distinct alterations in the proximal versus distal enhancer regions.
        Nucleic Acids Res. 1998; 26: 2923-2934https://doi.org/10.1093/nar/26.12.2923
        • Chandra R.K.
        Nutritional regulation of immunity and risk of infection in old age.
        Immunology. 1989; 67: 141-147
        • Briefel R.R.
        • Bialostosky K.
        • Kennedy-Stephenson J.
        • McDowell M.A.
        • Ervin R.B.
        • Wright J.D.
        Zinc intake of the U.S. Population: findings from the third national health and nutrition examination survey, 1988-1994.
        J Nutr. 2000; 130: 1367S-1373Shttps://doi.org/10.1093/jn/130.5.1367S
        • Cakman I.
        • Rohwer J.
        • Schütz R.M.
        • Kirchner H.
        • Rink L.
        Dysregulation between TH1 and TH2 T cell subpopulations in the elderly.
        Mech Ageing Dev. 1996; 87: 197-209https://doi.org/10.1016/0047-6374(96)01708-3
        • Prasad A.S.
        Zinc in growth and development and spectrum of human zinc deficiency.
        J Am Coll Nutr. 1988; 7: 377-384https://doi.org/10.1080/07315724.1988.10720255
        • Kawakami K.
        • Nakamura A.
        • Ishigami A.
        • Goto S.
        • Takahashi R.
        Age-related difference of site-specific histone modifications in rat liver.
        Biogerontology. 2009; 10: 415-421https://doi.org/10.1007/s10522-008-9176-0
        • Wang G.-L.
        • Salisbury E.
        • Shi X.
        • Timchenko L.
        • Medrano E.E.
        • Timchenko N.A.
        HDAC1 cooperates with C/EBPalpha in the inhibition of liver proliferation in old mice.
        J Biol Chem. 2008; 283: 26169-26178https://doi.org/10.1074/jbc.M803544200
        • Waldmann T.A.
        The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy.
        Canc Immunol Res. 2015; 3: 219-227https://doi.org/10.1158/2326-6066.CIR-15-0009
        • Kahmann L.
        • Uciechowski P.
        • Warmuth S.
        • Plümäkers B.
        • Gressner A.M.
        • Malavolta M.
        • et al.
        Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions.
        Rejuvenation Res. 2008; 11: 227-237https://doi.org/10.1089/rej.2007.0613
        • Hennigar S.R.
        • Kelley A.M.
        • McClung J.P.
        Metallothionein and zinc transporter expression in circulating human blood cells as biomarkers of zinc status: a systematic review.
        Adv Nutr. 2016; 7: 735-746https://doi.org/10.3945/an.116.012518