Methane and fatty acid metabolism pathways are predictive of Low-FODMAP diet efficacy for patients with irritable bowel syndrome

Published:January 11, 2021DOI:https://doi.org/10.1016/j.clnu.2020.12.041

      Summary

      Objective

      Identification of microbiota-based biomarkers as predictors of low-FODMAP diet response and design of a diet recommendation strategy for IBS patients.

      Design

      We created a compendium of gut microbiome and disease severity data before and after a low-FODMAP diet treatment from published studies followed by unified data processing, statistical analysis and predictive modeling. We employed data-driven methods that solely rely on the compendium data, as well as hypothesis-driven methods that focus on methane and short chain fatty acid (SCFA) metabolism pathways that were implicated in the disease etiology.

      Results

      The patient's response to a low-FODMAP diet was predictable using their pre-diet fecal samples with F1 accuracy scores of 0.750 and 0.875 achieved through data-driven and hypothesis-driven predictors, respectively. The fecal microbiome of patients with high response had higher abundance of methane and SCFA metabolism pathways compared to patients with no response (p-values < 6 × 10−3). The genera Ruminococcus 1, Ruminococcaceae UCG-002 and Anaerostipes can be used as predictive biomarkers of diet response. Furthermore, the low-FODMAP diet followers were identifiable given their microbiome data (F1-score of 0.656).

      Conclusion

      Our integrated data analysis results argue that there are two types of patients, those with high colonic methane and SCFA production, who will respond well on a low-FODMAP diet, and all others, who would benefit a dietary supplementation containing butyrate and propionate, as well as probiotics with SCFA-producing bacteria, such as lactobacillus. This work demonstrates how data integration can lead to novel discoveries and paves the way towards personalized diet recommendations for IBS.

      Keywords

      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lovell R.M.
        • Ford A.C.
        Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis.
        Clin Gastroenterol Hepatol. 2012; 10: 712-721
        • Chey W.D.
        • Kurlander J.
        • Eswaran S.
        Irritable bowel syndrome: a clinical review.
        Jama. 2015; 313: 949-958
        • Ford A.C.
        • Moayyedi P.
        • Chey W.D.
        • Harris L.A.
        • Lacy B.E.
        • Saito Y.A.
        • et al.
        American College of Gastroenterology monograph on management of irritable bowel syndrome.
        Am J Gastroenterol. 2018; 113: 1-18
        • Moayyedi P.
        • Andrews C.N.
        • MacQueen G.
        • Korownyk C.
        • Marsiglio M.
        • Graff L.
        • et al.
        Canadian Association of Gastroenterology clinical practice guideline for the management of irritable bowel syndrome (IBS).
        J Can Assoc Gastroenterol. 2019; 2: 6-29
        • Staudacher H.M.
        • Whelan K.
        The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS.
        Gut. 2017; 66: 1517-1527
        • Bennet S.M.
        • Böhn L.
        • Störsrud S.
        • Liljebo T.
        • Collin L.
        • Lindfors P.
        • et al.
        Multivariate modelling of faecal bacterial profiles of patients with IBS predicts responsiveness to a diet low in FODMAPs.
        Gut. 2018; 67: 872-881
        • Rossi M.
        • Aggio R.
        • Staudacher H.M.
        • Lomer M.C.
        • Lindsay J.O.
        • Irving P.
        • et al.
        Volatile organic compounds in feces associate with response to dietary intervention in patients with irritable bowel syndrome.
        Clin Gastroenterol Hepatol. 2018; 16: 385-391
        • Wilder-Smith C.
        • Olesen S.S.
        • Materna A.
        • Drewes A.
        Predictors of response to a low-FODMAP diet in patients with functional gastrointestinal disorders and lactose or fructose intolerance.
        Aliment Pharmacol Ther. 2017; 45: 1094-1106
        • Kalantar-Zadeh K.
        • Berean K.J.
        • Burgell R.E.
        • Muir J.G.
        • Gibson P.R.
        Intestinal gases: influence on gut disorders and the role of dietary manipulations.
        Nat Rev Gastroenterol Hepatol. 2019; 1–15
        • Casen C.
        • Vebø H.
        • Sekelja M.
        • Hegge F.
        • Karlsson M.
        • Ciemniejewska E.
        • et al.
        Deviations in human gut microbiota: a novel diagnostic test for determining dysbiosis in patients with IBS or IBD.
        Aliment Pharmacol Ther. 2015; 42: 71-83
        • Lyra A.
        • Hillilä M.
        • Huttunen T.
        • Männikkö S.
        • Taalikka M.
        • Tennilä J.
        • et al.
        Irritable bowel syndrome symptom severity improves equally with probiotic and placebo.
        World J Gastroenterol. 2016; 22: 10631
        • Kaptchuk T.J.
        • Friedlander E.
        • Kelley J.M.
        • Sanchez M.N.
        • Kokkotou E.
        • Singer J.P.
        • et al.
        Placebos without deception: a randomized controlled trial in irritable bowel syndrome.
        PloS One. 2010; 5e15591
        • Callahan B.J.
        • McMurdie P.J.
        • Rosen M.J.
        • Han A.W.
        • Johnson A.J.A.
        • Holmes S.P.
        DADA2: high-resolution sample inference from Illumina amplicon data.
        Nat Methods. 2016; 13: 581-583
        • McIntosh K.
        • Reed D.E.
        • Schneider T.
        • Dang F.
        • Keshteli A.H.
        • De Palma G.
        • et al.
        FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial.
        Gut. 2017; 66: 1241-1251
        • Quast C.
        • Pruesse E.
        • Yilmaz P.
        • Gerken J.
        • Schweer T.
        • Yarza P.
        • et al.
        The SILVA ribosomal RNA gene database project: improved data processing and web-based tools.
        Nucleic Acids Res. 2012; 41: D590-D596
        • McDonald D.
        • Price M.N.
        • Goodrich J.
        • Nawrocki E.P.
        • DeSantis T.Z.
        • Probst A.
        • et al.
        An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea.
        ISME J. 2012; 6: 610
        • Langille M.G.
        • Zaneveld J.
        • Caporaso J.G.
        • McDonald D.
        • Knights D.
        • Reyes J.A.
        • et al.
        Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences.
        Nat Biotechnol. 2013; 31: 814
        • Gloor G.B.
        • Macklaim J.M.
        • Pawlowsky-Glahn V.
        • Egozcue J.J.
        Microbiome datasets are compositional: and this is not optional.
        Front Microbiol. 2017; 8: 2224
        • Parthasarathy G.
        • Chen J.
        • Chen X.
        • Chia N.
        • O'Connor H.M.
        • Wolf P.G.
        • et al.
        Relationship between microbiota of the colonic mucosa vs feces and symptoms, colonic transit, and methane production in female patients with chronic constipation.
        Gastroenterology. 2016; 150: 367-379
        • Sloan T.J.
        • Jalanka J.
        • Major G.A.
        • Krishnasamy S.
        • Pritchard S.
        • Abdelrazig S.
        • et al.
        A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects.
        PloS One. 2018; 13e0201410
        • Sigg C.
        • Sigg M.C.
        Package “nsprcomp”.
        2018
        • Sigg C.D.
        • Buhmann J.M.
        Expectation-maximization for sparse and non-negative PCA.
        in: Proceedings of the 25th international conference on Machine learning. 2008: 960-967
        • Triantafyllou K.
        • Chang C.
        • Pimentel M.
        Methanogens, methane and gastrointestinal motility.
        J Neurogastroenterol Motil. 2014; 20: 31
        • Levitt M.D.
        Production and excretion of hydrogen gas in man.
        N Engl J Med. 1969; 281: 122-127
        • Thiele J.H.
        • Zeikus J.G.
        Control of interspecies electron flow during anaerobic digestion: significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs.
        Appl Environ Microbiol. 1988; 54: 20-29
        • Yamamura R.
        • Nakamura K.
        • Kitada N.
        • Aizawa T.
        • Shimizu Y.
        • Nakamura K.
        • et al.
        Associations of gut microbiota, dietary intake, and serum short-chain fatty acids with fecal short-chain fatty acids.
        Biosci Microbiota, Food Health. 2019; 19 (010)
        • Kim G.
        • Deepinder F.
        • Morales W.
        • Hwang L.
        • Weitsman S.
        • Chang C.
        • et al.
        Methanobrevibacter smithii is the predominant methanogen in patients with constipation-predominant IBS and methane on breath.
        Dig Dis Sci. 2012; 57: 3213-3218
        • Harvie R.M.
        • Chisholm A.W.
        • Bisanz J.E.
        • Burton J.P.
        • Herbison P.
        • Schultz K.
        • et al.
        Long-term irritable bowel syndrome symptom control with reintroduction of selected FODMAPs.
        World J Gastroenterol. 2017; 23: 4632
        • Schumann D.
        • Langhorst J.
        • Dobos G.
        • Cramer H.
        Randomised clinical trial: yoga vs a low-FODMAP diet in patients with irritable bowel syndrome.
        Aliment Pharmacol Ther. 2018; 47: 203-211
        • Gill P.
        • Van Zelm M.
        • Muir J.
        • Gibson P.
        Short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders.
        Aliment Pharmacol Ther. 2018; 48: 15-34
        • Kolodziejczyk A.A.
        • Zheng D.
        • Elinav E.
        Diet–microbiota interactions and personalized nutrition.
        Nat Rev Microbiol. 2019; : 1-12
        • Smith N.W.
        • Shorten P.R.
        • Altermann E.H.
        • Roy N.C.
        • McNabb W.C.
        Hydrogen cross-feeders of the human gastrointestinal tract.
        Gut Microb. 2019; 10: 270-288
        • Maslowski K.M.
        • Vieira A.T.
        • Ng A.
        • Kranich J.
        • Sierro F.
        • Yu D.
        • et al.
        Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43.
        Nature. 2009; 461: 1282-1286
        • Pozuelo M.
        • Panda S.
        • Santiago A.
        • Mendez S.
        • Accarino A.
        • Santos J.
        • et al.
        Reduction of butyrate-and methane-producing microorganisms in patients with Irritable Bowel Syndrome.
        Sci Rep. 2015; 5: 12693
        • Nagpal R.
        • Wang S.
        • Ahmadi S.
        • Hayes J.
        • Gagliano J.
        • Subashchandrabose S.
        • et al.
        Human-origin probiotic cocktail increases short-chain fatty acid production via modulation of mice and human gut microbiome.
        Sci Rep. 2018; 8: 1-15
        • Pedersen N.
        • Andersen N.N.
        • Végh Z.
        • Jensen L.
        • Ankersen D.V.
        • Felding M.
        • et al.
        Ehealth: low FODMAP diet vs Lactobacillus rhamnosus GG in irritable bowel syndrome.
        World J Gastroenterol: WJG. 2014; 20: 16215
        • Momčilović S.
        • Cantacessi C.
        • Arsić-Arsenijević V.
        • Otranto D.
        • Tasić-Otašević S.
        Rapid diagnosis of parasitic diseases: current scenario and future needs.
        Clin Microbiol Infect. 2019; 25: 290-309
        • Yao C.K.
        • Tuck C.J.
        The clinical value of breath hydrogen testing.
        J Gastroenterol Hepatol. 2017; 32: 20-22
        • Eetemadi A.
        • Rai N.
        • Pereira B.M.P.
        • Kim M.
        • Schmitz H.
        • Tagkopoulos I.
        The computational diet: a review of computational methods across diet, microbiome, and health.
        Front Microbiol. 2020; 11: 393https://doi.org/10.3389/fmicb.2020.00393
        • Dooley D.M.
        • Griffiths E.J.
        • Gosal G.S.
        • Buttigieg P.L.
        • Hoehndorf R.
        • Lange M.C.
        • et al.
        FoodOn: a harmonized food ontology to increase global food traceability, quality control and data integration.
        NPJ Sci Food. 2018; 2: 1-10
        • Youn J.
        • Naravane T.
        • Tagkopoulos I.
        Using word embeddings to learn a better food ontology.
        Front Artif Intell. 2020; 3: 93https://doi.org/10.3389/frai.2020.584784
        • Chumpitazi B.P.
        • Hollister E.B.
        • Oezguen N.
        • Tsai C.M.
        • McMeans A.R.
        • Luna R.A.
        • et al.
        Gut microbiota influences low fermentable substrate diet efficacy in children with irritable bowel syndrome.
        Gut Microb. 2014; 5: 165-175
        • Chumpitazi B.P.
        • Cope J.L.
        • Hollister E.B.
        • Tsai C.M.
        • McMeans A.R.
        • Luna R.A.
        • et al.
        Randomised clinical trial: gut microbiome biomarkers are associated with clinical response to a low FODMAP diet in children with the irritable bowel syndrome.
        Aliment Pharmacol Ther. 2015; 42: 418-427
        • Staudacher H.M.
        • Lomer M.C.
        • Farquharson F.M.
        • Louis P.
        • Fava F.
        • Franciosi E.
        • et al.
        A diet low in FODMAPs reduces symptoms in patients with irritable bowel syndrome and a probiotic restores bifidobacterium species: a randomized controlled trial.
        Gastroenterology. 2017; 153: 936-947
        • Valeur J.
        • Sm\aastuen M.C.
        • Knudsen T.
        • Lied G.A.
        • Røseth A.G.
        Exploring gut microbiota composition as an indicator of clinical response to dietary FODMAP restriction in patients with irritable bowel syndrome.
        Dig Dis Sci. 2018; 63: 429-436