The use of bioelectrical impedance analysis to predict post-operative complications in adult patients having surgery for cancer: A systematic review

  • L. Matthews
    Correspondence
    Corresponding author. Perioperative Medicine Department, Shackleton Department of Anaesthesia, University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK.
    Affiliations
    Department of Perioperative Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK

    University of Southampton, Southampton, UK
    Search for articles by this author
  • A. Bates
    Affiliations
    National Institute for Health Research Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
    Search for articles by this author
  • S.A. Wootton
    Affiliations
    University of Southampton, Southampton, UK

    National Institute for Health Research Cancer and Nutrition Collaboration, UK
    Search for articles by this author
  • D. Levett
    Affiliations
    Department of Perioperative Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK

    University of Southampton, Southampton, UK
    Search for articles by this author
Published:March 16, 2021DOI:https://doi.org/10.1016/j.clnu.2021.03.008

      Summary

      Background

      Patients undergoing surgery for cancer are at particular risk of post-operative complications. The pre-operative period is an opportunity to identify and mitigate risk factors and improve outcome. Bioelectrical impedance analysis (BIA) may offer an additional means of identifying patients at risk of post-operative morbidity.

      Aims

      The aim of this systematic review was to assess the use of measures and estimates of body composition determined by BIA as markers of peri-operative risk in adult patients undergoing elective surgery for cancer.

      Methods

      This review was performed in accordance with the PRISMA guidelines. The electronic databases of MEDLINE, EMBASE, CINAHL, CENTRAL and the Web of Science were searched from inception. Studies of adult participants having elective surgery for cancer were included if participants underwent BIA in the peri-operative period and were assessed for post-operative complications.

      Results

      2578 studies were identified, of which 12 were eligible for inclusion. In total the studies report data from 1508 subjects. Five studies examined phase angle or standardized phase angle, six examined derived measures and one examined both. Eight of the 12 demonstrated an association between phase angle and/or body composition and an increased risk of post-operative complications.

      Conclusions

      Bioelectrical impedance analysis in the peri-operative period may be useful in predicting the risk of complications following elective cancer surgery. Phase angle more consistently demonstrates an association than derived estimates. Further high quality studies are needed and should report the raw impedance values, standardized phase angle and the equations used to derive body composition.

      Keywords

      Abbreviations:

      BIA (Bioelectrical impedance analysis), BMI (Body mass index), PA (Phase angle), SPA (Standardized Phase Angle)
      To read this article in full you will need to make a payment
      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sullivan R.
        • Alatise O.I.
        • Anderson B.O.
        • Audisio R.
        • Autier P.
        • Aggarwal A.
        • et al.
        Global cancer surgery: delivering safe, affordable, and timely cancer surgery.
        Lancet Oncol. 2015; https://doi.org/10.1016/S1470-2045(15)00223-5
        • Gillis C.
        • Carli F.
        Promoting perioperative metabolic and nutritional care.
        Anesthesiology. 2015; https://doi.org/10.1097/ALN.0000000000000795
        • Arends J.
        • Bachmann P.
        • Baracos V.
        • Barthelemy N.
        • Bertz H.
        • Bozzetti F.
        • et al.
        ESPEN guidelines on nutrition in cancer patients.
        Clin Nutr. 2017; 36: 11-48https://doi.org/10.1016/j.clnu.2016.07.015
        • Mak M.
        • Bell K.
        • Ng W.
        • Lee M.
        Nutritional status, management and clinical outcomes in patients with esophageal and gastro-oesophageal cancers: a descriptive study.
        Nutr Diet. 2017; https://doi.org/10.1111/1747-0080.12306
        • Martin L.
        • Senesse P.
        • Gioulbasanis I.
        • Antoun S.
        • Bozzetti F.
        • Deans C.
        • et al.
        Diagnostic criteria for the classification of cancer-associated weight loss.
        J Clin Oncol. 2015; 33: 90-99https://doi.org/10.1200/jco.2014.56.1894
        • Pan H.
        • Cai S.
        • Ji J.
        • Jiang Z.
        • Liang H.
        • Lin F.
        • et al.
        The impact of nutritional status, nutritional risk, and nutritional treatment on clinical outcome of 2248 hospitalized cancer patients: a multi-center, prospective cohort study in Chinese teaching hospitals.
        Nutr Canc. 2013; 65: 62-70https://doi.org/10.1080/01635581.2013.741752
        • Ghaferi A.A.
        • Birkmeyer J.D.
        • Dimick J.B.
        Variation in hospital mortality associated with inpatient surgery.
        N Engl J Med. 2009; 361: 1368-1375https://doi.org/10.1056/NEJMsa0903048
        • Moonesinghe S.R.
        • Mythen M.G.
        • Das P.
        • Rowan K.M.
        • Grocott M.P.W.
        Risk stratification tools for predicting morbidity and mortality in adult patients undergoing major surgery: qualitative systematic review.
        Anesthesiology. 2013; 119: 959-981https://doi.org/10.1097/ALN.0b013e3182a4e94d
        • Scheede-Bergdahl C.
        • Minnella E.M.
        • Carli F.
        Multi-modal prehabilitation: addressing the why, when, what, how, who and where next?.
        Anaesthesia. 2019; https://doi.org/10.1111/anae.14505
        • Scally C.P.
        • Thumma J.R.
        • Birkmeyer J.D.
        • Dimick J.B.
        Impact of surgical quality improvement on payments in medicare patients.
        Ann Surg. 2015; 262: 249-252https://doi.org/10.1097/SLA.0000000000001069
        • Horowitz M.
        • Neeman E.
        • Sharon E.
        • Ben-Eliyahu S.
        Exploiting the critical perioperative period to improve long-term cancer outcomes.
        Nat Rev Clin Oncol. 2015; 12: 213-226https://doi.org/10.1038/nrclinonc.2014.224
        • Levett D.Z.H.
        • Jack S.
        • Swart M.
        • Carlisle J.
        • Wilson J.
        • Snowden C.
        • et al.
        Perioperative cardiopulmonary exercise testing (CPET): consensus clinical guidelines on indications, organization, conduct, and physiological interpretation.
        Br J Anaesth. 2018; https://doi.org/10.1016/j.bja.2017.10.020
        • Kyle U.G.
        • Morabia A.
        • Slosman D.O.
        • Mensi N.
        • Unger P.
        • Pichard C.
        Contribution of body composition to nutritional assessment at hospital admission in 995 patients: a controlled population study.
        Br J Nutr. 2001; https://doi.org/10.1079/bjn2001470
        • Pichard C.
        • Kyle U.G.
        • Morabia A.
        • Perrier A.
        • Vermeulen B.
        • Unger P.
        Nutritional assessment: lean body mass depletion at hospital admission is associated with an increased length of stay.
        Am J Clin Nutr. 2004; https://doi.org/10.1093/ajcn/79.4.613
        • Thibault R.
        • Makhlouf A.M.
        • Mulliez A.
        • Cristina Gonzalez M.
        • Kekstas G.
        • Kozjek N.R.
        • et al.
        Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project.
        Intensive Care Med. 2016; https://doi.org/10.1007/s00134-016-4468-3
        • Kyle U.G.
        • Bosaeus I.
        • De Lorenzo A.D.
        • Deurenberg P.
        • Elia M.
        • Manuel Gómez J.
        • et al.
        Bioelectrical impedance analysis-part II: utilization in clinical practice.
        Clin Nutr. 2004; 23: 1430-1453https://doi.org/10.1016/j.clnu.2004.09.012
        • Barbosa-Silva M.C.G.
        • Barros A.J.D.
        Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations.
        Curr Opin Clin Nutr Metab Care. 2005; 8: 311-317https://doi.org/10.1097/01.mco.0000165011.69943.39
        • Barbosa-Silva M.C.G.
        Subjective and objective nutritional assessment methods: what do they really assess?.
        Curr Opin Clin Nutr Metab Care. 2008; 11: 248-254https://doi.org/10.1097/MCO.0b013e3282fba5d7
        • Bosy-Westphal A.
        • Danielzik S.
        • Dörhöfer R.P.
        • Later W.
        • Wiese S.
        • Müller M.J.
        Phase angle from bioelectrical impedance analysis: population reference values by age, sex, and body mass index.
        J Parenter Enteral Nutr. 2006; https://doi.org/10.1177/0148607106030004309
        • Gupta D.
        • Lammersfeld C.A.
        • Burrows J.L.
        • Dahlk S.L.
        • Vashi P.G.
        • Grutsch J.F.
        • et al.
        Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer.
        Am J Clin Nutr. 2004; 80: 1634-1638https://doi.org/10.1093/ajcn/80.6.1634
        • Gupta D.
        • Lis C.G.
        • Dahlk S.L.
        • Vashi P.G.
        • Grutsch J.F.
        • Lammersfeld C.A.
        Bioelectrical impedance phase angle as a prognostic indicator in advanced pancreatic cancer.
        Br J Nutr. 2004; 92: 957-962https://doi.org/10.1079/BJN20041292
        • Buntzel J.
        • Kraus T.
        • Buntzel H.
        • Kuttner K.
        • Frohlich D.
        • Oehler W.
        • et al.
        Nutritional parameters for patients with head and neck cancer.
        Anticancer Res. 2012; 32: 2119-2123
        • Sanchez-Lara K.
        • Turcott J.G.
        • Juarez E.
        • Guevara P.
        • Nunez-Valencia C.
        • Onate-Ocana L.F.
        • et al.
        Association of nutrition parameters including bioelectrical impedance and systemic inflammatory response with quality of life and prognosis in patients with advanced non-small-cell lung cancer: a prospective study.
        Nutr Canc. 2012; 64: 526-534https://doi.org/10.1080/01635581.2012.668744
        • Garlini L.M.
        • Alves F.D.
        • Ceretta L.B.
        • Perry I.S.
        • Souza G.C.
        • Clausell N.O.
        Phase angle and mortality: a systematic review.
        Eur J Clin Nutr. 2019; https://doi.org/10.1038/s41430-018-0159-1
        • Buter H.
        • Veenstra J.A.
        • Koopmans M.
        • Boerma C.E.
        Phase angle is related to outcome after ICU admission; an observational study.
        Clin Nutr ESPEN. 2018; 23: 61-66https://doi.org/10.1016/j.clnesp.2017.12.008
        • Stapel S.N.
        • Looijaard W.G.P.M.
        • Dekker I.M.
        • Girbes A.R.J.
        • Weijs P.J.M.
        • Oudemans-van Straaten H.M.
        Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients.
        Eur J Clin Nutr. 2018; https://doi.org/10.1038/s41430-018-0167-1
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting Items for systematic reviews and meta-analyses: the PRISMA statement.
        BMJ. 2009; https://doi.org/10.1136/bmj.b2535
        • Ouzzani M.
        • Hammady H.
        • Fedorowicz Z.
        • Elmagarmid A.
        Rayyan-a web and mobile app for systematic reviews.
        Syst Rev. 2016; https://doi.org/10.1186/s13643-016-0384-4
        • Downs S.H.
        • Black N.
        The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions.
        J Epidemiol Community Health. 1998; https://doi.org/10.1136/jech.52.6.377
        • Mauricio S.F.
        • Xiao J.
        • Prado C.M.
        • Gonzalez M.C.
        • Correia M.I.T.D.
        Different nutritional assessment tools as predictors of postoperative complications in patients undergoing colorectal cancer resection.
        Clin Nutr. 2018; 37: 1505-1511https://doi.org/10.1016/j.clnu.2017.08.026
        • Berstad P.
        • Haugum B.
        • Helgeland M.
        • Bukholm I.
        • Almendingen K.
        Preoperative body size and composition, habitual diet, and post-operative complications in elective colorectal cancer patients in Norway.
        J Hum Nutr Diet. 2013; 26: 359-368https://doi.org/10.1111/jhn.12002
        • Tsaousi G.
        • Kokkota S.
        • Papakostas P.
        • Stavrou G.
        • Doumaki E.
        • Kotzampassi K.
        Body composition analysis for discrimination of prolonged hospital stay in colorectal cancer surgery patients.
        Eur J Canc Care. 2017; https://doi.org/10.1111/ecc.12491
        • Tamura T.
        • Sakurai K.
        • Nambara M.
        • Miki Y.
        • Toyokawa T.
        • Kubo N.
        • et al.
        Adverse effects of preoperative sarcopenia on postoperative complications of patients with gastric cancer.
        Anticancer Res. 2019; 39: 987-992https://doi.org/10.21873/anticanres.13203
        • Sato T.
        • Aoyama T.
        • Hayashi T.
        • Segami K.
        • Kawabe T.
        • Fujikawa H.
        • et al.
        Impact of preoperative hand grip strength on morbidity following gastric cancer surgery.
        Gastric Cancer. 2016; 19: 1008-1015https://doi.org/10.1007/s10120-015-0554-4
        • Ida S.
        • Watanabe M.
        • Yoshida N.
        • Baba Y.
        • Umezaki N.
        • Harada K.
        • et al.
        Sarcopenia is a predictor of postoperative respiratory complications in patients with esophageal cancer.
        Ann Surg Oncol. 2015; 22: 4432-4437https://doi.org/10.1245/s10434-015-4559-3
        • Uccella S.
        • Mele M.C.
        • Quagliozzi L.
        • Rinninella E.
        • Nero C.
        • Capuccio S.
        • et al.
        Assessment of preoperative nutritional status using BIA-derived phase angle (PhA) in patients with advanced ovarian cancer: correlation with the extent of cytoreduction and complications.
        Gynecol Oncol. 2018; 149: 263-269https://doi.org/10.1016/j.ygyno.2018.03.044
        • Cardoso I.C.R.
        • Aredes M.A.
        • Chaves G.V.
        Applicability of the direct parameters of bioelectrical impedance in assessing nutritional status and surgical complications of women with gynecological cancer.
        Eur J Clin Nutr. 2017; 71: 1278-1284https://doi.org/10.1038/ejcn.2017.115
        • Kerimoglu O.S.
        • Pekin A.
        • Yilmaz S.A.
        • Yavas G.
        • Beyhekim F.
        • Demirtas A.A.
        • et al.
        Effect of the percentage of body fat on surgical, clinical and pathological outcomes in women with endometrial cancer.
        J Obstet Gynaecol Res. 2015; https://doi.org/10.1111/jog.12554
        • Pena N.F.
        • Mauricio S.F.
        • Rodrigues A.M.S.
        • Carmo A.S.
        • Coury N.C.
        • Correia M.I.T.D.
        • et al.
        Association between standardized phase Angle, nutrition status, and clinical outcomes in surgical cancer patients.
        Nutr Clin Pract. 2018; https://doi.org/10.1002/ncp.10110
        • Härter J.
        • Orlandi S.P.
        • Gonzalez M.C.
        Nutritional and functional factors as prognostic of surgical cancer patients.
        Support Care Canc. 2017; 25: 2525-2530https://doi.org/10.1007/s00520-017-3661-4
        • Fritz T.
        • Hollwarth I.
        • Romaschow M.
        • Schlag P.
        The predictive role of bioelectrical impedance analysis (BIA) in postoperative complications of cancer patients.
        Eur J Surg Oncol. 1990; 16: 326-331
        • Barbosa-Silva M.C.G.
        • Barros A.J.D.
        • Wang J.
        • Heymsfield S.B.
        • Pierson R.N.
        Bioelectrical impedance analysis: population reference values for phase angle by age and sex.
        Am J Clin Nutr. 2005; https://doi.org/10.1093/ajcn.82.1.49
        • Genton L.
        • Karsegard V.L.
        • Kyle U.G.
        • Hans D.B.
        • Michel J.P.
        • Pichard C.
        Comparison of four bioelectrical impedance analysis formulas in healthy elderly subjects.
        Gerontology. 2001; https://doi.org/10.1159/000052821
        • Kyle U.G.
        • Genton L.
        • Karsegard L.
        • Slosman D.O.
        • Pichard C.
        Single prediction equation for bioelectrical impedance analysis in adults aged 20-94 years.
        Nutrition. 2001; https://doi.org/10.1016/S0899-9007(00)00553-0
        • Strong V.E.
        • Selby L.V.
        • Sovel M.
        • Disa J.J.
        • Hoskins W.
        • Dematteo R.
        • et al.
        Development and assessment of memorial sloan kettering cancer center's surgical secondary events grading system.
        Ann Surg Oncol. 2015; https://doi.org/10.1245/s10434-014-4141-4
        • Reilly J.J.
        • Hull S.F.
        • Albert N.
        • Waller A.
        • Bringardener S.
        Economic impact of malnutrition: a model system for hospitalized patients.
        J Parenter Enteral Nutr. 1988; https://doi.org/10.1177/0148607188012004371
        • Dindo D.
        • Demartines N.
        • Clavien P.A.
        Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey.
        Ann Surg. 2004; https://doi.org/10.1097/01.sla.0000133083.54934.ae
        • Baumgartner R.N.
        • Chumlea W.C.
        • Roche A.F.
        Bioelectric impedance phase angle and body composition.
        Am J Clin Nutr. 1988; https://doi.org/10.1093/ajcn/48.1.16
        • Daly J.M.
        • Fry W.A.
        • Little A.G.
        • Winchester D.P.
        • McKee R.F.
        • Stewart A.K.
        • et al.
        Esophageal cancer: results of American College of Surgeons patient care evaluation study.
        J Am Coll Surg. 2000; https://doi.org/10.1016/s1072-7515(00)00238-6
        • Jager-Wittenaar H.
        • Dijkstra P.U.
        • Vissink A.
        • Van Der Laan B.F.A.M.
        • Van Oort R.P.
        • Roodenburg J.L.N.
        Critical weight loss in head and neck cancer - prevalence and risk factors at diagnosis: an explorative study.
        Support Care Canc. 2007; https://doi.org/10.1007/s00520-006-0212-9
        • Lukaski H.C.
        Evolution of bioimpedance: a circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research.
        Eur J Clin Nutr. 2013; 67: S2-S9https://doi.org/10.1038/ejcn.2012.149
        • Pereira M.M.E.
        • Queiroz M.D.S.C.
        • de Albuquerque N.M.C.
        • Rodrigues J.
        • Wiegert E.V.M.
        • Calixto-Lima L.
        • et al.
        The prognostic role of phase Angle in advanced cancer patients: a systematic review.
        Nutr Clin Pract. 2018; 33: 813-824https://doi.org/10.1002/ncp.10100
        • Barao K.
        • Cavagnari M.A.V.
        • Fucuta P.S.
        • Forones N.M.
        Association between nutrition status and survival in elderly patients with colorectal cancer.
        Nutr Clin Pract. 2017; 32: 658-663https://doi.org/10.1177/0884533617706894
        • Gupta D.
        • Lammersfeld C.A.
        • Vashi P.G.
        • King J.
        • Dahlk S.L.
        • Grutsch J.F.
        • et al.
        Bioelectrical impedance phase angle as a prognostic indicator in breast cancer.
        BMC Canc. 2008; 8: 249https://doi.org/10.1186/1471-2407-8-249
        • Rinaldi S.
        • Gilliland J.
        • O'Connor C.
        • Chesworth B.
        • Madill J.
        Is phase angle an appropriate indicator of malnutrition in different disease states? A systematic review.
        Clin Nutr ESPEN. 2019; 29: 1-14https://doi.org/10.1016/j.clnesp.2018.10.010
        • Mundstock E.
        • Amaral M.A.
        • Baptista R.R.
        • Sarria E.E.
        • dos Santos R.R.G.
        • Filho A.D.
        • et al.
        Association between phase angle from bioelectrical impedance analysis and level of physical activity: systematic review and meta-analysis.
        Clin Nutr. 2019; 38: 1504-1510https://doi.org/10.1016/j.clnu.2018.08.031
        • Fearon K.
        • Strasser F.
        • Anker S.D.
        • Bosaeus I.
        • Bruera E.
        • Fainsinger R.L.
        • et al.
        Definition and classification of cancer cachexia: an international consensus.
        Lancet Oncol. 2011; https://doi.org/10.1016/S1470-2045(10)70218-7
      1. Comprehensive personalised care model. NHS England, 2019