Assessment of physiological barriers to nutrition following critical illness

  • James Whitehead
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
    Search for articles by this author
  • Matthew J. Summers
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
    Search for articles by this author
  • Rhea Louis
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
    Search for articles by this author
  • Luke M. Weinel
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
    Search for articles by this author
  • Kylie Lange
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
    Search for articles by this author
  • Bethany Dunn
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia
    Search for articles by this author
  • Marianne J. Chapman
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia

    Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
    Search for articles by this author
  • Lee-anne S. Chapple
    Correspondence
    Corresponding author. 4G751, ICU Research, Royal Adelaide Hospital, Port Road, Adelaide, South Australia, 5000, Australia.
    Affiliations
    Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia

    Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, Australia

    Intensive Care Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
    Search for articles by this author
Published:November 17, 2021DOI:https://doi.org/10.1016/j.clnu.2021.11.001

      Summary

      Background & aims

      Nutrition may be important for recovery from critical illness. Gastrointestinal dysfunction is a key barrier to nutrition delivery in the Intensive Care Unit (ICU) and metabolic rate is elevated exacerbating nutritional deficits. Whether these factors persist following ICU discharge is unknown. We assessed whether delayed gastric emptying (GE) and impaired glucose absorption persist post-ICU discharge.

      Methods

      A prospective observational study was conducted in mechanically ventilated adults at 3 time-points: in ICU (V1); on the post-ICU ward (V2); and 3-months after ICU discharge (V3); and compared to age-matched healthy volunteers. On each visit, all participants received a test-meal containing 100 ml of 1 kcal/ml liquid nutrient, labelled with 0.1 g 13C-octanoic acid and 3 g 3-O-Methyl-glucose (3-OMG), and breath and blood samples were collected over 240min to quantify GE (gastric emptying coefficient (GEC)), and glucose absorption (3-OMG concentration; area under the curve (AUC)). Data are mean ± standard error of the mean (SEM) and differences shown with 95% confidence intervals (95%CI).

      Results

      Twenty-six critically ill patients completed V1 (M:F 20:6; 62.0 ± 2.9 y; BMI 29.8 ± 1.2 kg/m2; APACHE II 19.7 ± 1.9), 15 completed V2 and eight completed V3; and were compared to 10 healthy volunteers (M:F 6:4; 60.5 ± 7.5 y; BMI 26.0 ± 1.0 kg/m2). GE was significantly slower on V1 compared to health (GEC difference: −0.96 (95%CI -1.61, −0.31); and compared to V2 (−0.73 (−1.16, −0.31) and V3 (−1.03 (−1.47, −0.59). GE at V2 and V3 were not different to that in health (V2: −0.23 (−0.61, 0.14); V3: 0.10 (−0.27, 0.46)). GEC: V1: 2.64 ± 0.19; V2: 3.37 ± 0.12; V3: 3.67 ± 0.10; health: 3.60 ± 0.13. Glucose absorption (3-OMG AUC0-240) was impaired on V1 compared to V2 (−37.9 (−64.2, −11.6)), and faster on V3 than in health (21.8 (0.14, 43.4) but absorption at V2 and V3 did not differ from health. Intestinal glucose absorption: V1: 63.8 ± 10.4; V2: 101.7 ± 7.0; V3: 111.9 ± 9.7; health: 90.7 ± 3.8.

      Conclusion

      This study suggests that delayed GE and impaired intestinal glucose absorption recovers rapidly post-ICU. This requires further confirmation in a larger population.
      The REINSTATE trial was prospectively registered at www.anzctr.org.au.

      Trial ID

      ACTRN12618000370202.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Needham D.M.
        • Davidson J.
        • Cohen H.
        • Hopkins R.O.
        • Weinert C.
        • Wunsch H.
        • et al.
        Improving long-term outcomes after discharge from intensive care unit: report from a stakeholders' conference.
        Crit Care Med. 2012; 40: 502-509
        • Koch S.
        • Wollersheim T.
        • Bierbrauer J.
        • Haas K.
        • Morgeli R.
        • Deja M.
        • et al.
        Long-term recovery in critical illness myopathy is complete, contrary to polyneuropathy.
        Muscle Nerve. 2014; 50: 431-436
        • Hopkins R.O.
        • Suchyta M.R.
        • Kamdar B.B.
        • Darowski E.
        • Jackson J.C.
        • Needham D.M.
        Instrumental activities of daily living after critical illness: a systematic review.
        Annals Am Thoracic Soc. 2017; 14: 1332-1343
        • Intiso D.
        • Amoruso L.
        • Zarrelli M.
        • Pazienza L.
        • Basciani M.
        • Grimaldi G.
        • et al.
        Long-term functional outcome and health status of patients with critical illness polyneuromyopathy.
        Acta Neurol Scand. 2011; 123: 211-219
        • Hashem M.D.
        • Nallagangula A.
        • Nalamalapu S.
        • Nunna K.
        • Nausran U.
        • Robinson K.A.
        • et al.
        Patient outcomes after critical illness: a systematic review of qualitative studies following hospital discharge.
        Crit Care. 2016; 20: 345
        • Herridge M.S.
        • Tansey C.M.
        • Matte A.
        • Tomlinson G.
        • Diaz-Granados N.
        • Cooper A.
        • et al.
        Functional disability 5 years after acute respiratory distress syndrome.
        NEJM. 2011; 364: 1293-1304
        • Hodgson C.L.
        • Udy A.A.
        • Bailey M.
        • Barrett J.
        • Bellomo R.
        • Bucknall T.
        • et al.
        The impact of disability in survivors of critical illness.
        Intensive Care Med. 2017; 43: 992-1001
        • Herridge M.S.
        • Cheung A.M.
        • Tansey C.M.
        • Matte-Martyn A.
        • Diaz-Granados N.
        • Al-Saidi F.
        • et al.
        One-year outcomes in survivors of the acute respiratory distress syndrome.
        NEJM. 2003; 348: 683-693
        • Puthucheary Z.A.
        • Rawal J.
        • McPhail M.
        • Connolly B.
        • Ratnayake G.
        • Chan P.
        • et al.
        Acute skeletal muscle wasting in critical illness.
        J Am Med Assoc. 2013; 310: 1591-1600
        • Latronico N.
        • Fenzi F.
        • Recupero D.
        • Guarneri B.
        • Tomelleri G.
        • Tonin P.
        • et al.
        Critical illness myopathy and neuropathy.
        Lancet. 1996; 347: 1579-1582
        • Schuetz P.
        • Fehr R.
        • Baechli V.
        • Geiser M.
        • Deiss M.
        • Gomes F.
        • et al.
        Individualised nutritional support in medical inpatients at nutritional risk: a randomised clinical trial.
        Lancet. 2019; 393: 2312-2321
        • Nguyen N.Q.
        • Ng M.P.
        • Chapman M.
        • Fraser R.J.
        • Holloway R.H.
        The impact of admission diagnosis on gastric emptying in critically ill patients.
        Crit Care. 2007; 11: R16
        • Chapman M.J.
        • Besanko L.K.
        • Burgstad C.M.
        • Fraser R.J.
        • Bellon M.
        • O'Connor S.
        • et al.
        Gastric emptying of a liquid nutrient meal in the critically ill: relationship between scintigraphic and carbon breath test measurement.
        Gut. 2011; 60: 1336-1343
        • O'Connor S.
        • Rivett J.
        • Poole A.
        • Deane A.
        • Lange K.
        • Yandell R.
        • et al.
        Nasogastric feeding intolerance in the critically ill.
        Crit Care. 2011; 15 (Epub 2011 Mar 11): P379https://doi.org/10.1186/cc9799
        • Di Bartolomeo A.E.
        • Chapman M.J.
        • A VZ
        • Summers M.J.
        • Jones K.L.
        • Nguyen N.Q.
        • et al.
        Comparative effects on glucose absorption of intragastric and post-pyloric nutrient delivery in the critically ill.
        Crit Care. 2012; 16: R167
        • Burgstad C.M.
        • Besanko L.K.
        • Deane A.M.
        • Nguyen N.Q.
        • Saadat-Gilani K.
        • Davidson G.
        • et al.
        Sucrose malabsorption and impaired mucosal integrity in enterally fed critically ill patients: a prospective cohort observational study.
        Crit Care Med. 2013; 41: 1221-1228
        • Ali Abdelhamid Y.
        • Cousins C.E.
        • Sim J.A.
        • Bellon M.S.
        • Nguyen N.Q.
        • Horowitz M.
        • et al.
        Effect of critical illness on triglyceride absorption.
        JPEN (J Parenter Enteral Nutr). 2015; 39: 966-972
        • Chapman M.J.
        • Fraser R.J.
        • Matthews G.
        • Russo A.
        • Bellon M.
        • Besanko L.K.
        • et al.
        Glucose absorption and gastric emptying in critical illness.
        Crit Care. 2009; 13: R140
        • Plank L.D.
        • Hill G.L.
        Sequential metabolic changes following induction of systemic inflammatory response in patients with severe sepsis or major blunt trauma.
        World J Surg. 2000; 24: 630-638
        • Gungabissoon U.
        • Hacquoil K.
        • Bains C.
        • Irizarry M.
        • Dukes G.
        • Williamson R.
        • et al.
        Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness.
        JPEN (J Parenter Enteral Nutr). 2015; 39: 441-448
        • McClave S.A.
        • Martindale R.G.
        • Vanek V.W.
        • McCarthy M.
        • Roberts P.
        • Taylor B.
        • et al.
        Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.).
        JPEN (J Parenter Enteral Nutr). 2009; 33: 277-316
        • Deane A.M.
        • Summers M.J.
        • Zaknic A.V.
        • Chapman M.J.
        • Di Bartolomeo A.E.
        • Bellon M.
        • et al.
        Glucose absorption and small intestinal transit in critical illness.
        Crit Care Med. 2011; 39: 1282-1288
        • Bendavid I.
        • Singer P.
        • Theilla M.
        • Themessl-Huber M.
        • Sulz I.
        • Mouhieddine M.
        • et al.
        A 7 year worldwide prevalence study of nutrition practice in intensive care.
        Clin Nutr. 2017; 36: 1122-1129
        • Cahill N.E.
        • Dhaliwal R.
        • Day A.G.
        • Jiang X.
        • Heyland D.K.
        Nutrition therapy in the critical care setting: what is "best achievable" practice? An international multicenter observational study.
        Crit Care Med. 2010; 38: 395-401
        • Peterson S.J.
        • Tsai A.A.
        • Scala C.M.
        • Sowa D.C.
        • Sheean P.M.
        • Braunschweig C.L.
        Adequacy of oral intake in critically ill patients 1 week after extubation.
        J Am Diet Assoc. 2010; 110: 427-433
        • Moisey L.
        A comprehensive assessment of nutritional status and factors impacting nutrition recovery in hospitalized, critically ill patients following liberation from mechanical ventilation.
        UWSpace, 2017
        • Chapman M.
        • Peake S.L.
        • Bellomo R.
        • Davies A.
        • Deane A.
        • Horowitz M.
        • et al.
        Energy-dense versus routine enteral nutrition in the critically ill.
        NEJM. 2018; 379: 1823-1834
      1. National Heart L, Blood Institute Acute Respiratory Distress Syndrome Clinical Trials N, Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, Morris A, Dong N et al: initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial.
        J Am Med Assoc. 2012; 307: 795-803
        • Bear D.E.
        • Wandrag L.
        • Merriweather J.L.
        • Connolly B.
        • Hart N.
        • Grocott M.P.W.
        The role of nutritional support in the physical and functional recovery of critically ill patients: a narrative review.
        Crit Care. 2017; 21: 226
        • Ridley E.J.
        • Peake S.L.
        • Jarvis M.
        • Deane A.M.
        • Lange K.
        • Davies A.R.
        • et al.
        Nutrition therapy in Australia and New Zealand intensive care units: an international comparison study.
        JPEN (J Parenter Enteral Nutr). 2018; 42: 1349-1357
        • Chapple L.S.
        • Deane A.M.
        • Heyland D.K.
        • Lange K.
        • Kranz A.J.
        • Williams L.T.
        • et al.
        Energy and protein deficits throughout hospitalization in patients admitted with a traumatic brain injury.
        Clin Nutr. 2016; 35: 1315-1322
        • Ridley E.J.
        • Parke R.L.
        • Davies A.R.
        • Bailey M.
        • Hodgson C.
        • Deane A.M.
        • et al.
        What happens to nutrition intake in the post-intensive care unit hospitalization period? An observational cohort study in critically ill adults.
        JPEN (J Parenter Enteral Nutr). 2019; 43: 88-95
        • Chapple L.S.
        • Weinel L.M.
        • Abdelhamid Y.A.
        • Summers M.J.
        • Nguyen T.
        • Kar P.
        • et al.
        Observed appetite and nutrient intake three months after ICU discharge.
        Clin Nutr. 2010; 38: 1215-1220
        • Nguyen N.Q.
        • Bryant L.K.
        • Burgstad C.M.
        • Chapman M.
        • Deane A.
        • Bellon M.
        • et al.
        Gastric emptying measurement of liquid nutrients using the (13)C-octanoate breath test in critically ill patients: a comparison with scintigraphy.
        Intensive Care Med. 2013; 39: 1238-1246
        • Deane A.M.
        • Zaknic A.V.
        • Summers M.J.
        • Chapman M.J.
        • Lange K.
        • Ritz M.A.
        • et al.
        Intrasubject variability of gastric emptying in the critically ill using a stable isotope breath test.
        Clin Nutr. 2010; 29: 682-686
        • Fordtran J.S.
        • Clodi P.H.
        • Soergel K.H.
        • Ingelfinger F.J.
        Sugar absorption tests, with special reference to 3-0-methyl-d-glucose and d-xylose.
        Ann Intern Med. 1962; 57: 883-891
        • Cunningham K.F.
        • Aeberhardt L.E.
        • Wiggs B.R.
        • Phang P.T.
        Appropriate interpretation of indirect calorimetry for determining energy expenditure of patients in intensive care units.
        Am J Surg. 1994; 167: 547-549
        • Martineau J.
        • Bauer J.D.
        • Isenring E.
        • Cohen S.
        Malnutrition determined by the patient-generated subjective global assessment is associated with poor outcomes in acute stroke patients.
        Clin Nutr. 2005; 24: 1073-1077
        • Giangiuliani G.
        • Mancini A.
        • Gui D.
        Validation of a severity of illness score (Apache II) in a surgical intensive care unit.
        Intensive Care Med. 1989; 15: 519-522
        • Huber W.
        • Schneider J.
        • Lahmer T.
        • Küchle C.
        • Jungwirth B.
        • Schmid R.M.
        • et al.
        Validation of RIFLE, AKIN, and a modified AKIN definition ("backward classification") of acute kidney injury in a general ICU: analysis of a 1-year period.
        Medicine. 2018; 97e12465
        • Deane A.M.
        • Fraser R.J.
        • Chapman M.J.
        Prokinetic drugs for feed intolerance in critical illness: current and potential therapies.
        Critical Care and Resuscitation. 2009; 11: 132-143
        • Ott L.
        • Young B.
        • Phillips R.
        • McClain C.
        • Adams L.
        • Dempsey R.
        • et al.
        Altered gastric emptying in the head-injured patient: relationship to feeding intolerance.
        J Neurosurg. 1991; 74: 738-742
        • Nematy M.
        • O'Flynn J.E.
        • Wandrag L.
        • Brynes A.E.
        • Brett S.J.
        • Patterson M.
        • et al.
        Changes in appetite related gut hormones in intensive care unit patients: a pilot cohort study.
        Crit Care. 2006; 10: R10
        • Hejazi N.
        • Mazloom Z.
        • Zand F.
        • Rezaianzadeh A.
        • Amini A.
        Nutritional assessment in critically ill patients.
        Iran J Med Sci. 2016; 41: 171-179
        • Zusman O.
        • Theilla M.
        • Cohen J.
        • Kagan I.
        • Bendavid I.
        • Singer P.
        Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study.
        Crit Care. 2016; 20: 367
        • Frankenfield D.C.
        • Ashcraft C.M.
        • Galvan D.A.
        Longitudinal prediction of metabolic rate in critically ill patients.
        JPEN (J Parenter Enteral Nutr). 2012; 36: 700-712
        • Allingstrup M.J.
        • Kondrup J.
        • Perner A.
        • Christensen P.L.
        • Jensen T.H.
        • Henneberg S.W.
        Indirect calorimetry in mechanically ventilated patients: a prospective, randomized, clinical validation of 2 devices against a gold standard.
        JPEN (J Parenter Enteral Nutr). 2017; 41: 1272-1277