High hydrostatic pressure processing of human milk preserves milk oligosaccharides and avoids formation of Maillard reaction products

Published:November 20, 2021DOI:https://doi.org/10.1016/j.clnu.2021.11.013

      Summary

      Background & aims

      High hydrostatic pressure (HHP) processing is a non-thermal method proposed as an alternative to Holder pasteurization (HoP) for the treatment of human milk. HHP preserves numerous milk bioactive components that are degraded by HoP, but no data are available for milk oligosaccharides (HMOs) or the formation of Maillard reaction products, which may be deleterious for preterm newborns.

      Methods

      We evaluated the impact of HHP processing of human milk on 22 HMOs measured by liquid chromatography with fluorescence detection and on furosine, lactuloselysine, carboxymethyllysine (CML) and carboxyethyllysine (CEL) measured by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), four established indicators of the Maillard reaction. Human raw milk was sterilized by HoP (62.5 °C for 30 min) or processed by HHP (350 MPa at 38 °C).

      Results

      Neither HHP nor HoP processing affected the concentration of HMOs, but HoP significantly increased furosine, lactuloselysine, CML and CEL levels in milk.

      Conclusions

      Our findings demonstrate that HPP treatment preserves HMOs and avoids formation of Maillard reaction products. Our study confirms and extends previous findings that HHP treatment of human milk provides safe milk, with fewer detrimental effects on the biochemically active milk components than HoP.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Demazeau G.
        • Rivalain N.
        High hydrostatic pressure and biology: a brief history.
        Appl Microbiol Biotechnol. 2011; 89: 1305-1314https://doi.org/10.1007/s00253-010-3070-9
        • Demazeau G.
        • Rivalain N.
        The development of high hydrostatic pressure processes as an alternative to other pathogen reduction methods.
        J Appl Microbiol. 2011; 110: 1359-1369https://doi.org/10.1111/j.1365-2672.2011.05000.x
        • Adkins I.
        • Hradilova N.
        • Palata O.
        • Sadilkova L.
        • Palova-Jelinkova L.
        • Spisek R.
        High hydrostatic pressure in cancer immunotherapy and biomedicine.
        Biotechnol Adv. 2018; 36: 577-582https://doi.org/10.1016/j.biotechadv.2018.01.015
        • Wesolowska A.
        • Sinkiewicz-Darol E.
        • Barbarska O.
        • Bernatowicz-Lojko U.
        • Borszewska-Kornacka M.K.
        • van Goudoever J.B.
        Innovative techniques of processing human milk to preserve key components.
        Nutrients. 2019; 11https://doi.org/10.3390/nu11051169
        • Demazeau G.
        • Plumecocq A.
        • Lehours P.
        • Martin P.
        • Couëdelo L.
        • Billeaud C.
        A new high hydrostatic pressure process to assure the microbial safety of human milk while preserving the biological activity of its main components.
        Front Public Health. 2018; 6https://doi.org/10.3389/fpubh.2018.00306
        • Wesolowska A.
        • Sinkiewicz-Darol E.
        • Barbarska O.
        • Strom K.
        • Rutkowska M.
        • Karzel K.
        • et al.
        New achievements in high-pressure processing to preserve human milk bioactivity.
        Front Pediatr. 2018; 6: 323https://doi.org/10.3389/fped.2018.00323
        • Picaud J.-C.
        • Buffin R.
        Human milk-treatment and quality of banked human milk.
        Clin Perinatol. 2017; 44: 95-119https://doi.org/10.1016/j.clp.2016.11.003
        • Escuder-Vieco D.
        • Espinosa-Martos I.
        • Rodríguez J.M.
        • Fernández L.
        • Pallás-Alonso C.R.
        Effect of HTST and holder pasteurization on the concentration of immunoglobulins, growth factors, and hormones in donor human milk.
        Front Immunol. 2018; 9https://doi.org/10.3389/fimmu.2018.02222
        • Ninonuevo M.R.
        • Park Y.
        • Yin H.
        • Zhang J.
        • Ward R.E.
        • Clowers B.H.
        • et al.
        A strategy for annotating the human milk glycome.
        J Agric Food Chem. 2006; 54: 7471-7480https://doi.org/10.1021/jf0615810
        • Hundshammer C.
        • Minge O.
        Love with shaping you-influential factors on the breast milk content of human milk oligosaccharides and their decisive roles for neonatal development.
        Nutrients. 2020; 12https://doi.org/10.3390/nu12113568
        • Urashima T.
        • Asakuma S.
        • Leo F.
        • Fukuda K.
        • Messer M.
        • Oftedal O.T.
        The predominance of type I oligosaccharides is a feature specific to human breast Milk.
        Adv Nutr. 2012; 3: 473S-482Shttps://doi.org/10.3945/an.111.001412
        • Carr L.E.
        • Virmani M.D.
        • Rosa F.
        • Munblit D.
        • Matazel K.S.
        • Elolimy A.A.
        • et al.
        Role of human milk bioactives on infants' gut and immune health.
        Front Immunol. 2021; 12: 604080https://doi.org/10.3389/fimmu.2021.604080
        • Moukarzel S.
        • Bode L.
        Human milk oligosaccharides and the preterm infant: a journey in sickness and in health.
        Clin Perinatol. 2017; 44: 193-207https://doi.org/10.1016/j.clp.2016.11.014
        • Hegele J.
        • Buetler T.
        • Delatour T.
        Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products.
        Anal Chim Acta. 2008; 617: 85-96https://doi.org/10.1016/j.aca.2007.12.027
        • Pischetsrieder M.
        • Henle T.
        Glycation products in infant formulas: chemical, analytical and physiological aspects.
        Amino Acids. 2012; 42: 1111-1118https://doi.org/10.1007/s00726-010-0775-0
        • Erbersdobler H.F.
        • Somoza V.
        Forty years of furosine - forty years of using Maillard reaction products as indicators of the nutritional quality of foods.
        Mol Nutr Food Res. 2007; 51: 423-430https://doi.org/10.1002/mnfr.200600154
        • Tessier F.J.
        • Niquet C.
        The metabolic, nutritional and toxicological consequences of ingested dietary Maillard reaction products: a literature review.
        J Soc Biol. 2007; 201: 199-207https://doi.org/10.1051/jbio:2007025
        • Rérat A.
        • Calmes R.
        • Vaissade P.
        • Finot P.-A.
        Nutritional and metabolic consequences of the early Maillard reaction of heat treated milk in the pig. Significance for man.
        Eur J Nutr. 2002; 41: 1-11https://doi.org/10.1007/s003940200000
        • Finot P.A.
        • Bujard E.
        • Mottu F.
        • Mauron J.
        Availability of the true Schiff's bases of lysine. Chemical evaluation of the Schiff's base between lysine and lactose in milk.
        Adv Exp Med Biol. 1977; 86B: 343-365https://doi.org/10.1007/978-1-4757-9113-6_23
        • Tessier F.J.
        • Boulanger E.
        • Howsam M.
        Metabolic transit of dietary advanced glycation end-products - the case of NƐ-carboxymethyllysine.
        Glycoconj J. 2021; 38: 311-317https://doi.org/10.1007/s10719-020-09950-y
        • Birlouez-Aragon I.
        • Saavedra G.
        • Tessier F.J.
        • Galinier A.
        • Ait-Ameur L.
        • Lacoste F.
        • et al.
        A diet based on high-heat-treated foods promotes risk factors for diabetes mellitus and cardiovascular diseases.
        Am J Clin Nutr. 2010; 91: 1220-1226https://doi.org/10.3945/ajcn.2009.28737
        • Vlassara H.
        • Cai W.
        • Tripp E.
        • Pyzik R.
        • Yee K.
        • Goldberg L.
        • et al.
        Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial.
        Diabetologia. 2016; 59: 2181-2192https://doi.org/10.1007/s00125-016-4053-x
        • Francisco F.A.
        • Saavedra L.P.J.
        • Junior M.D.F.
        • Barra C.
        • Matafome P.
        • Mathias P.C.F.
        • et al.
        Early AGEing and metabolic diseases: is perinatal exposure to glycotoxins programming for adult-life metabolic syndrome?.
        Nutr Rev. 2021; 79: 13-24https://doi.org/10.1093/nutrit/nuaa074
        • Elmhiri G.
        • Mahmood D.F.D.
        • Niquet-Leridon C.
        • Jacolot P.
        • Firmin S.
        • Guigand L.
        • et al.
        Formula-derived advanced glycation end products are involved in the development of long-term inflammation and oxidative stress in kidney of IUGR piglets.
        Mol Nutr Food Res. 2015; 59: 939-947https://doi.org/10.1002/mnfr.201400722
        • Borg D.J.
        • Yap F.Y.T.
        • Keshvari S.
        • Simmons D.G.
        • Gallo L.A.
        • Fotheringham A.K.
        • et al.
        Perinatal exposure to high dietary advanced glycation end products in transgenic NOD8.3 mice leads to pancreatic beta cell dysfunction.
        Islets. 2018; 10: 10-24https://doi.org/10.1080/19382014.2017.1405189
        • Langhendries J.P.
        • Hurrell R.F.
        • Furniss D.E.
        • Hischenhuber C.
        • Finot P.A.
        • Bernard A.
        • et al.
        Maillard reaction products and lysinoalanine: urinary excretion and the effects on kidney function of preterm infants fed heat-processed milk formula.
        J Pediatr Gastroenterol Nutr. 1992; 14: 62-70
        • Klenovics K.S.
        • Boor P.
        • Somoza V.
        • Celec P.
        • Fogliano V.
        • Sebeková K.
        Advanced glycation end products in infant formulas do not contribute to insulin resistance associated with their consumption.
        PLoS One. 2013; 8e53056https://doi.org/10.1371/journal.pone.0053056
        • Austin S.
        • Bénet T.
        Quantitative determination of non-lactose milk oligosaccharides.
        Anal Chim Acta. 2018; 1010: 86-96https://doi.org/10.1016/j.aca.2017.12.036
        • Niquet-Léridon C.
        • Tessier F.J.
        Quantification of Nε-carboxymethyl-lysine in selected chocolate-flavoured drink mixes using high-performance liquid chromatography–linear ion trap tandem mass spectrometry.
        Food Chem. 2011; 126: 655-663https://doi.org/10.1016/j.foodchem.2010.10.111
        • Krause R.
        • Knoll K.
        • Henle T.
        Studies on the formation of furosine and pyridosine during acid hydrolysis of different Amadori products of lysine.
        Eur Food Res Tech. 2003; 216: 277-283https://doi.org/10.1007/s00217-002-0649-0
        • Victora C.G.
        • Bahl R.
        • Barros A.J.D.
        • França G.V.A.
        • Horton S.
        • Krasevec J.
        • et al.
        Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect.
        Lancet. 2016; 387: 475-490https://doi.org/10.1016/S0140-6736(15)01024-7
        • Quigley M.
        • Embleton N.D.
        • McGuire W.
        Formula versus donor breast milk for feeding preterm or low birth weight infants.
        Cochrane Database Syst Rev. 2018; 6: CD002971https://doi.org/10.1002/14651858.CD002971.pub4
        • Lechner B.E.
        • Vohr B.R.
        Neurodevelopmental outcomes of preterm infants fed human milk: a systematic review.
        Clin Perinatol. 2017; 44: 69-83https://doi.org/10.1016/j.clp.2016.11.004
        • Cheng L.
        • Akkerman R.
        • Kong C.
        • Walvoort M.T.C.
        • de Vos P.
        More than sugar in the milk: human milk oligosaccharides as essential bioactive molecules in breast milk and current insight in beneficial effects.
        Crit Rev Food Sci Nutr. 2021; 61: 1184-1200https://doi.org/10.1080/10408398.2020.1754756
        • Sodhi C.P.
        • Wipf P.
        • Yamaguchi Y.
        • Fulton W.B.
        • Kovler M.
        • Niño D.F.
        • et al.
        The human milk oligosaccharides 2’-fucosyllactose and 6’-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling.
        Pediatr Res. 2021; 89: 91-101https://doi.org/10.1038/s41390-020-0852-3
        • Masi A.C.
        • Embleton N.D.
        • Lamb C.A.
        • Young G.
        • Granger C.L.
        • Najera J.
        • et al.
        Human milk oligosaccharide DSLNT and gut microbiome in preterm infants predicts necrotising enterocolitis.
        Gut. 2020; https://doi.org/10.1136/gutjnl-2020-322771
        • Autran C.A.
        • Kellman B.P.
        • Kim J.H.
        • Asztalos E.
        • Blood A.B.
        • Spence E.C.H.
        • et al.
        Human milk oligosaccharide composition predicts risk of necrotising enterocolitis in preterm infants.
        Gut. 2018; 67: 1064-1070https://doi.org/10.1136/gutjnl-2016-312819
        • Harris J.E.
        • Pinckard K.M.
        • Wright K.R.
        • Baer L.A.
        • Arts P.J.
        • Abay E.
        • et al.
        Exercise-induced 3’-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring.
        Nat Metabol. 2020; 2: 678-687https://doi.org/10.1038/s42255-020-0223-8
        • Hauser J.
        • Pisa E.
        • Arias Vásquez A.
        • Tomasi F.
        • Traversa A.
        • Chiodi V.
        • et al.
        Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode.
        Mol Psychiatr. 2021; https://doi.org/10.1038/s41380-021-01054-9
        • Samuel T.M.
        • Binia A.
        • de Castro C.A.
        • Thakkar S.K.
        • Billeaud C.
        • Agosti M.
        • et al.
        Impact of maternal characteristics on human milk oligosaccharide composition over the first 4 months of lactation in a cohort of healthy European mothers.
        Sci Rep. 2019; 9: 11767https://doi.org/10.1038/s41598-019-48337-4
        • Lefebvre G.
        • Shevlyakova M.
        • Charpagne A.
        • Marquis J.
        • Vogel M.
        • Kirsten T.
        • et al.
        Time of lactation and maternal fucosyltransferase genetic polymorphisms determine the variability in human milk oligosaccharides.
        Front Nutr. 2020; 7: 574459https://doi.org/10.3389/fnut.2020.574459
        • Bertino E.
        • Coppa G.V.
        • Giuliani F.
        • Coscia A.
        • Gabrielli O.
        • Sabatino G.
        • et al.
        Effects of Holder pasteurization on human milk oligosaccharides.
        Int J Immunopathol Pharmacol. 2008; 21: 381-385https://doi.org/10.1177/039463200802100216
        • Daniels B.
        • Coutsoudis A.
        • Autran C.
        • Amundson Mansen K.
        • Israel-Ballard K.
        • Bode L.
        The effect of simulated flash heating pasteurisation and Holder pasteurisation on human milk oligosaccharides.
        Paediatr Int Child Health. 2017; 37: 204-209https://doi.org/10.1080/20469047.2017.1293869
        • Hahn W.-H.
        • Kim J.
        • Song S.
        • Park S.
        • Kang N.M.
        The human milk oligosaccharides are not affected by pasteurization and freeze-drying.
        J Matern Fetal Neonatal Med. 2019; 32: 985-991https://doi.org/10.1080/14767058.2017.1397122
        • Underwood M.A.
        • Gaerlan S.
        • De Leoz M.L.A.
        • Dimapasoc L.
        • Kalanetra K.M.
        • Lemay D.G.
        • et al.
        Human milk oligosaccharides in premature infants: absorption, excretion, and influence on the intestinal microbiota.
        Pediatr Res. 2015; 78: 670-677https://doi.org/10.1038/pr.2015.162
        • Ward R.E.
        • Niñonuevo M.
        • Mills D.A.
        • Lebrilla C.B.
        • German J.B.
        In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri.
        Appl Environ Microbiol. 2006; 72: 4497-4499https://doi.org/10.1128/AEM.02515-05
        • Ward R.E.
        • Niñonuevo M.
        • Mills D.A.
        • Lebrilla C.B.
        • German J.B.
        In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria.
        Mol Nutr Food Res. 2007; 51: 1398-1405https://doi.org/10.1002/mnfr.200700150
        • Asakuma S.
        • Hatakeyama E.
        • Urashima T.
        • Yoshida E.
        • Katayama T.
        • Yamamoto K.
        • et al.
        Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
        J Biol Chem. 2011; 286: 34583-34592https://doi.org/10.1074/jbc.M111.248138
        • Matsuki T.
        • Yahagi K.
        • Mori H.
        • Matsumoto H.
        • Hara T.
        • Tajima S.
        • et al.
        A key genetic factor for fucosyllactose utilization affects infant gut microbiota development.
        Nat Commun. 2016; 7: 11939https://doi.org/10.1038/ncomms11939
        • Delgado-Andrade C.
        • Fogliano V.
        Dietary advanced glycosylation end-products (dAGEs) and melanoidins formed through the Maillard reaction: physiological consequences of their intake.
        Annu Rev Food Sci Technol. 2018; 9: 271-291https://doi.org/10.1146/annurev-food-030117-012441
        • Hellwig M.
        • Bunzel D.
        • Huch M.
        • Franz C.M.A.P.
        • Kulling S.E.
        • Henle T.
        Stability of individual maillard reaction products in the presence of the human colonic microbiota.
        J Agric Food Chem. 2015; 63: 6723-6730https://doi.org/10.1021/acs.jafc.5b01391
        • Bui T.P.N.
        • Ritari J.
        • Boeren S.
        • de Waard P.
        • Plugge C.M.
        • de Vos W.M.
        Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.
        Nat Commun. 2015; 6: 10062https://doi.org/10.1038/ncomms10062
        • Bui T.P.N.
        • Troise A.D.
        • Fogliano V.
        • de Vos W.M.
        Anaerobic degradation of N-ε-Carboxymethyllysine, a major glycation end-product, by human intestinal bacteria.
        J Agric Food Chem. 2019; 67: 6594-6602https://doi.org/10.1021/acs.jafc.9b02208
        • Tessier F.J.
        • Niquet-Léridon C.
        • Jacolot P.
        • Jouquand C.
        • Genin M.
        • Schmidt A.-M.
        • et al.
        Quantitative assessment of organ distribution of dietary protein-bound 13 C-labeled Nϵ -carboxymethyllysine after a chronic oral exposure in mice.
        Mol Nutr Food Res. 2016; 60: 2446-2456https://doi.org/10.1002/mnfr.201600140
        • Delgado-Andrade C.
        • Tessier F.J.
        • Niquet-Leridon C.
        • Seiquer I.
        • Pilar Navarro M.
        Study of the urinary and faecal excretion of Nε-carboxymethyllysine in young human volunteers.
        Amino Acids. 2012; 43: 595-602https://doi.org/10.1007/s00726-011-1107-8
        • Martysiak-Żurowska D.
        • Stołyhwo A.
        Content of furosine in infant formulae and follow-on formulae.
        Pol J Food Nutr Sci. 2007; 57 (n.d.): 185-190
        • Henle T.
        • Zehetner G.
        • Klostermeyer H.
        Fast and sensitive determination of furosine.
        Z Lebensm Unters Forsch. 1995; 200: 235-237https://doi.org/10.1007/BF01190503
        • Dittrich R.
        • Hoffmann I.
        • Stahl P.
        • Müller A.
        • Beckmann M.W.
        • Pischetsrieder M.
        Concentrations of Nepsilon-carboxymethyllysine in human breast milk, infant formulas, and urine of infants.
        J Agric Food Chem. 2006; 54: 6924-6928https://doi.org/10.1021/jf060905h
        • Delatour T.
        • Hegele J.
        • Parisod V.
        • Richoz J.
        • Maurer S.
        • Steven M.
        • et al.
        Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The particular case of carboxymethyllysine.
        J Chromatogr A. 2009; 1216: 2371-2381https://doi.org/10.1016/j.chroma.2009.01.011
        • Ahmed N.
        • Mirshekar-Syahkal B.
        • Kennish L.
        • Karachalias N.
        • Babaei-Jadidi R.
        • Thornalley P.J.
        Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection.
        Mol Nutr Food Res. 2005; 49: 691-699https://doi.org/10.1002/mnfr.200500008
        • Assar S.H.
        • Moloney C.
        • Lima M.
        • Magee R.
        • Ames J.M.
        Determination of Nepsilon-(carboxymethyl)lysine in food systems by ultra performance liquid chromatography-mass spectrometry.
        Amino Acids. 2009; 36: 317-326https://doi.org/10.1007/s00726-008-0071-4