Assessment of clinical measures of total and regional body composition from a commercial 3-dimensional optical body scanner

Published:December 06, 2021DOI:https://doi.org/10.1016/j.clnu.2021.11.031

      Summary

      Background

      The accurate assessment of total body and regional body circumferences, volumes, and compositions are critical to monitor physical activity and dietary interventions, as well as accurate disease classifications including obesity, metabolic syndrome, sarcopenia, and lymphedema. We assessed body composition and anthropometry estimates provided by a commercial 3-dimensional optical (3DO) imaging system compared to criterion measures.

      Methods

      Participants of the Shape Up! Adults study were recruited for similar sized stratifications by sex, age (18–40, 40–60, >60 years), BMI (under, normal, overweight, obese), and across five ethnicities (non-Hispanic [NH] Black, NH White, Hispanic, Asian, Native Hawaiian/Pacific Islander). All participants received manual anthropometry assessments, duplicate whole-body 3DO (Styku S100), and dual-energy X-ray absorptiometry (DXA) scans. 3DO estimates provided by the manufacturer for anthropometry and body composition were compared to the criterion measures using concordance correlation coefficient (CCC) and Bland–Altman analysis. Test-retest precision was assessed by root mean square error (RMSE) and coefficient of variation.

      Results

      A total of 188 (102 female) participants were included. The overall fat free mass (FFM) as measured by DXA (54.1 ± 15.2 kg) and 3DO (55.3 ± 15.0 kg) showed a small mean difference of 1.2 ± 3.4 kg (95% limits of agreement −7.0 to +5.6) and the CCC was 0.97 (95% CI: 0.96–0.98). The CCC for FM was 0.95 (95% CI: 0.94–0.97) and the mean difference of 1.3 ± 3.4 kg (95% CI: −5.5 to +8.1) reflected the difference in FFM measures. 3DO anthropometry and body composition measurements showed high test-retest precision for whole body volume (1.1 L), fat mass (0.41 kg), percent fat (0.60%), arm and leg volumes, (0.11 and 0.21 L, respectively), and waist and hip circumferences (all <0.60 cm). No group differences were observed when stratified by body mass index, sex, or race/ethnicity.

      Conclusions

      The anthropometric and body composition estimates provided by the 3DO scanner are precise and accurate to criterion methods if offsets are considered. This method offers a rapid, broadly available, and automated method of body composition assessment regardless of body size. Further studies are recommended to examine the relationship between measurements obtained by 3DO scans and metabolic health in healthy and clinical populations.

      Abbreviations:

      3DO (3-Dimensional Optical), FFM (Fat free mass), FM (Fat mass), RMSE (Root mean square error), %CV (coefficient of variation), CCC (Concordance correlation coefficient), DXA (Dual energy X-ray absorptiometry), CVD (Cardiovascular disease), T2D (Type II diabetes)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic and Personal
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Clinical Nutrition
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Flegal K.M.
        • Graubard B.I.
        • Williamson D.F.
        • Gail M.H.
        Cause-specific excess deaths associated with underweight, overweight, and obesity.
        J Am Med Assoc. 2007; 298: 2028
        • Wolin K.Y.
        • Carson K.
        • Colditz G.A.
        Obesity and cancer.
        Oncol. 2010; 15: 556-565
        • Lauby-Secretan B.
        • Scoccianti C.
        • Loomis D.
        • Grosse Y.
        • Bianchini F.
        • Straif K.
        Body fatness and cancer — viewpoint of the IARC working group.
        N Engl J Med. 2016; 375: 794-798
        • Després J.-P.
        Body fat distribution and risk of cardiovascular disease.
        Circulation. 2012; 126: 1301-1313
        • Abdullah A.
        • Stoelwinder J.
        • Shortreed S.
        • Wolfe R.
        • Stevenson C.
        • Walls H.
        • et al.
        The duration of obesity and the risk of type 2 diabetes.
        Publ Health Nutr. 2011; 14: 119-126
        • Guh D.P.
        • Zhang W.
        • Bansback N.
        • Amarsi Z.
        • Birmingham C.L.
        • Anis A.H.
        The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis.
        BMC Publ Health. 2009; 9: 88
        • Ward L.C.
        Human body composition: yesterday, today, and tomorrow.
        Eur J Clin Nutr. 2018; 72: 1201-1207
        • Batsis J.A.
        • Mackenzie T.A.
        • Barre L.K.
        • Lopez-Jimenez F.
        • Bartels S.J.
        Sarcopenia, sarcopenic obesity and mortality in older adults: results from the National Health and Nutrition Examination Survey III.
        Eur J Clin Nutr. 2014; 68: 1001-1007
        • Cederholm T.
        • Jensen G.L.
        • Correia M.I.T.D.
        • Gonzalez M.C.
        • Fukushima R.
        • Higashiguchi T.
        • et al.
        GLIM criteria for the diagnosis of malnutrition – a consensus report from the global clinical nutrition community.
        J Cachexia, Sarcopenia and Muscle. 2019; 10: 207-217
        • Morley J.E.
        • Baumgartner R.N.
        • Roubenoff R.
        • Mayer J.
        • Nair K.S.
        Sarcopenia. J Lab Clin Med. 2001; 137: 231-243
        • Taylor R.
        • Jayasinghe U.W.
        • Koelmeyer L.
        • Ung O.
        • Boyages J.
        Reliability and validity of arm volume measurements for assessment of lymphedema.
        Phys Ther. 2006; 86: 205-214
        • Van Pelt R.
        • Evans E.
        • Schechtman K.
        • Ehsani A.
        • Kohrt W.
        Contributions of total and regional fat mass to risk for cardiovascular disease in older women.
        Am J Physiol Endocrinol Metabol. 2002; 282: E1023-E1028
        • Zhang C.
        • Rexrode K.M.
        • Van Dam R.M.
        • Li T.Y.
        • Hu F.B.
        Abdominal obesity and the risk of all-cause, cardiovascular, and cancer mortality.
        Circulation. 2008; 117: 1658-1667
        • Shepherd J.A.
        • Ng B.K.
        • Sommer M.J.
        • Heymsfield S.B.
        Body composition by DXA.
        Bone. 2017; 104: 101-105
        • Wells J.C.K.
        Measuring body composition.
        Arch Dis Child. 2005; 91: 612-617
        • Ross R.
        • Goodpaster B.
        • Kelley D.
        • Boada F.
        Magnetic resonance imaging in human body composition research: from quantitative to qualitative tissue measurement.
        Ann N Y Acad Sci. 2000; 904: 12-17
        • Goodpaster B.H.
        • Thaete F.L.
        • Kelley D.E.
        Composition of skeletal muscle evaluated with computed tomography.
        Ann N Y Acad Sci. 2000; 904: 18-24
        • Mialich M.
        • Sicchieri J.M.F.
        • Junior A.A.J.
        Analysis of body composition: a critical review of the use of bioelectrical impedance analysis.
        Int J Clin Nutr. 2014; 2: 1-10
        • Frisancho A.
        (Press UoM)Arbor Ann Anthropometric standards: an interactive nutritional reference of body size and body composition for children and adults. 2 ed. University of Michigan Press, 2008: 352 (2008)
        • LaForgia J.
        • Gunn S.
        • Withers R.
        Body composition: validity of segmental bioelectrical impedance analysis.
        Asia Pac J Clin Nutr. 2008; 17: 586-591
        • Leahy S.
        • O'Neill C.
        • Sohun R.
        • Jakeman P.
        A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults.
        Eur J Appl Physiol. 2012; 112: 589-595
        • Kyle U.G.
        • Bosaeus I.
        • De Lorenzo A.D.
        • Deurenberg P.
        • Elia M.
        • Manuel Gómez J.
        • et al.
        Bioelectrical impedance analysis—part II: utilization in clinical practice.
        Clin Nutr. 2004; 23: 1430-1453
        • Eaton–Evans J.
        Nutritional assessment: anthropometry.
        in: C B. Encyclopedia of human nutrition. 4. Elsevier, Amsterdam, The Netherlands2005: 311-318
        • Nordhamn K.
        • Södergren E.
        • Olsson E.
        • Karlström B.
        • Vessby B.
        • Berglund L.
        Reliability of anthropometric measurements in overweight and lean subjects: consequences for correlations between anthropometric and other variables.
        Int J Obes. 2000; 24: 652-657
        • Tinsley G.M.
        • Moore M.L.
        • Dellinger J.R.
        • Adamson B.T.
        • Benavides M.L.
        Digital anthropometry via three-dimensional optical scanning: evaluation of four commercially available systems.
        Eur J Clin Nutr. 2020; 74: 1054-1064
        • Derouchey J.D.
        • Tomkinson G.R.
        • Rhoades J.L.
        • Fitzgerald J.S.
        Reliability of the Styku 3D whole-body scanner for the assessment of body size in athletes.
        Meas Phys Educ Exerc Sci. 2020; 24: 228-234
        • Silver B.
        • Wilson P.B.
        Reliability and minimal detectable change of the Styku 3D body scanner.
        Meas Phys Educ Exerc Sci. 2020; : 1-7
        • Bourgeois B.
        • Ng B.
        • Latimer D.
        • Stannard C.
        • Romeo L.
        • Li X.
        • et al.
        Clinically applicable optical imaging technology for body size and shape analysis: comparison of systems differing in design.
        Eur J Clin Nutr. 2017; 71: 1329-1335
        • Cabre H.E.
        • Blue M.N.
        • Hirsch K.R.
        • Brewer G.J.
        • Gould L.M.
        • Nelson A.G.
        • et al.
        Validity of a three-dimensional body scanner: comparison against a 4-compartment model and dual energy X-ray absorptiometry.
        Appl Physiol Nutr Metabol. 2021; 46: 644-650
        • Heymsfield S.B.
        • Bourgeois B.
        • Ng B.K.
        • Sommer M.J.
        • Li X.
        • Shepherd J.A.
        Digital anthropometry: a critical review.
        Eur J Clin Nutr. 2018; 72: 680-687
      1. Prevention CfDCa. National health and nutrition examination Survey (NHANES) anthropometry procedures manual. Available from: https ://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdf.

        • Lu Y.
        • Mathur A.K.
        • Blunt B.A.
        • Glüer C.C.
        • Will A.S.
        • Fuerst T.P.
        • et al.
        Dual X-ray absorptiometry quality control: comparison of visual examination and process-control charts.
        J Bone Miner Res. 1996; 11: 626-637
        • Hangartner T.N.
        • Warner S.
        • Braillon P.
        • Jankowski L.
        • Shepherd J.
        The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures.
        J Clin Densitom. 2013; 16: 520-536
        • Wilson J.P.
        • Mulligan K.
        • Fan B.
        • Sherman J.L.
        • Murphy E.J.
        • Tai V.W.
        • et al.
        Dual-energy X-ray absorptiometry–based body volume measurement for 4-compartment body composition.
        Am J Clin Nutr. 2012; 95: 25-31
        • Glüer C.-C.
        • Blake G.
        • Lu Y.
        • Blunt B.
        • Jergas M.
        • Genant H.
        Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques.
        Osteoporos Int. 1995; 5: 262-270
        • Ulijaszek S.J.
        • Kerr D.A.
        Anthropometric measurement error and the assessment of nutritional status.
        Br J Nutr. 1999; 82: 165-177
        • Lawrence I.
        • Lin K.
        A concordance correlation coefficient to evaluate reproducibility.
        Biometrics. 1989; 45: 255-268
        • Bland J.M.
        • Altman D.G.
        Statistical methods for assessing agreement between two methods of clinical measurement.
        Int J Nurs Stud. 2010; 47: 931-936
        • Day K.
        • Kwok A.
        • Evans A.
        • Mata F.
        • Verdejo-Garcia A.
        • Hart K.
        • et al.
        Comparison of a bioelectrical impedance device against the reference method dual energy X-ray absorptiometry and anthropometry for the evaluation of body composition in adults.
        Nutrients. 2018; 10: 1469
        • Ng B.K.
        • Hinton B.J.
        • Fan B.
        • Kanaya A.M.
        • Shepherd J.A.
        Clinical anthropometrics and body composition from 3D whole-body surface scans.
        Eur J Clin Nutr. 2016; 70: 1265-1270
        • Goto R.
        • Mascie-Taylor C.G.N.
        Precision of measurement as a component of human variation.
        J Physiol Anthropol. 2007; 26: 253-256
        • Pepper M.R.
        • Rd J.H.
        • Rd W.Y.
        • Stanforth P.R.
        • Cahill J.M.
        • Mahometa M.
        • et al.
        Validation of a 3-dimensional laser body scanner for assessment of waist and hip circumference.
        J Am Coll Nutr. 2010; 29: 179-188
        • Ng B.K.
        • Sommer M.J.
        • Wong M.C.
        • Pagano I.
        • Nie Y.
        • Fan B.
        • et al.
        Detailed 3-dimensional body shape features predict body composition, blood metabolites, and functional strength: the Shape Up! studies.
        Am J Clin Nutr. 2019; 110: 1316-1326
        • Harbin M.M.
        • Kasak A.
        • Ostrem J.D.
        • Dengel D.R.
        Validation of a three-dimensional body scanner for body composition measures.
        Eur J Clin Nutr. 2018; 72: 1191-1194
        • Wong M.C.
        • Ng B.K.
        • Kennedy S.F.
        • Hwaung P.
        • Liu E.Y.
        • Kelly N.N.
        • et al.
        Children and adolescents' anthropometrics body composition from 3-D optical surface scans.
        Obesity. 2019; 27: 1738-1749
        • Tinsley G.M.
        • Moore M.L.
        • Benavides M.L.
        • Dellinger J.R.
        • Adamson B.T.
        3-Dimensional optical scanning for body composition assessment: a 4-component model comparison of four commercially available scanners.
        Clin Nutr. 2020; 39: 3160-3167
        • Moon J.R.
        • Tobkin S.E.
        • Roberts M.D.
        • Dalbo V.J.
        • Kerksick C.M.
        • Bemben M.G.
        • et al.
        Total body water estimations in healthy men and women using bioimpedance spectroscopy: a deuterium oxide comparison.
        Nutr Metab. 2008; 5: 7
        • Jung S.H.
        • Ha K.H.
        • Kim D.J.
        Visceral fat mass has stronger associations with diabetes and prediabetes than other anthropometric obesity indicators among Korean adults.
        Yonsei Med J. 2016; 57: 674
        • Chuang Y.
        • Hsu K.
        • Hwang C.
        • Hu P.
        • Lin T.
        • Chiou W.
        Waist-to-Thigh ratio can also be a better indicator associated with type 2 diabetes than traditional anthropometrical measurements in Taiwan Population.
        Ann Epidemiol. 2006; 16: 321-331
        • Qiao Q.
        • Nyamdorj R.
        Is the association of type II diabetes with waist circumference or waist-to-hip ratio stronger than that with body mass index?.
        Eur J Clin Nutr. 2010; 64: 30-34
        • Lu B.
        • Zhou J.
        • Waring M.E.
        • Parker D.R.
        • Eaton C.B.
        Abdominal obesity and peripheral vascular disease in men and women: a comparison of waist-to-thigh ratio and waist circumference as measures of abdominal obesity.
        Atherosclerosis. 2010; 208: 253-257
        • Ng B.K.
        • Liu Y.E.
        • Wang W.
        • Kelly T.L.
        • Wilson K.E.
        • Schoeller D.A.
        • et al.
        Validation of rapid 4-component body composition assessment with the use of dual-energy X-ray absorptiometry and bioelectrical impedance analysis.
        Am J Clin Nutr. 2018; 108: 708-715
        • Smith-Ryan A.E.
        • Mock M.G.
        • Ryan E.D.
        • Gerstner G.R.
        • Trexler E.T.
        • Hirsch K.R.
        Validity and reliability of a 4-compartment body composition model using dual energy x-ray absorptiometry-derived body volume.
        Clin Nutr. 2017; 36: 825-830
        • Tinsley G.M.
        Reliability and agreement between DXA-derived body volumes and their usage in 4-compartment body composition models produced from DXA and BIA values.
        J Sports Sci. 2018; 36: 1235-1240
        • Wang Z.
        • Pi-Sunyer F.X.
        • Kotler D.P.
        • Wielopolski L.
        • Withers R.T.
        • Pierson R.N.
        • et al.
        Multicomponent methods: evaluation of new and traditional soft tissue mineral models by in vivo neutron activation analysis.
        Am J Clin Nutr. 2002; 76: 968-974
        • Yahathugoda C.
        • Weiler M.J.
        • Rao R.
        • De Silva L.
        • Dixon J.B.
        • Weerasooriya M.V.
        • et al.
        Use of a novel portable three-dimensional imaging system to measure limb volume and circumference in patients with filarial lymphedema.
        Am J Trop Med Hyg. 2017; 97: 1836-1842
        • Carl H.
        • Walia G.
        • Bello R.
        • Clarke-Pearson E.
        • Hassanein A.
        • Cho B.
        • et al.
        Systematic review of the surgical treatment of extremity lymphedema.
        J Reconstr Microsurg. 2017; 33: 412-425
        • Stanton A.
        • Northfield J.
        • Holroyd B.
        • Mortimer P.
        • Levick J.
        Validation of an optoelectronic limb volumeter (Perometer®).
        Lymphology. 1997; 30: 77-97
        • Mehrara B.J.
        • Greene A.K.
        Lymphedema and obesity: is there a link?.
        Plast Reconstr Surg. 2014; 134: 154e
        • Mastick J.
        • Smoot B.J.
        • Paul S.M.
        • Kober K.M.
        • Cooper B.A.
        • Madden L.K.
        • et al.
        Assessment of arm volume using a tape measure versus a 3D optical scanner in survivors with breast cancer-related lymphedema.
        Lymphat Res Biol. 2021;
        • Wells J.C.
        Three-dimensional optical scanning for clinical body shape assessment comes of age.
        Am J Clin Nutr. 2019; 110: 1272-1274
        • Stratton R.J.
        • Hackston A.
        • Longmore D.
        • Dixon R.
        • Price S.
        • Stroud M.
        • et al.
        Malnutrition in hospital outpatients and inpatients: prevalence, concurrent validity and ease of use of the ‘malnutrition universal screening tool’ (‘MUST’) for adults.
        Br J Nutr. 2004; 92: 799-808
        • Lohman Tc Z.
        Dual energy X-ray absorptiometry.
        in: Heymsfield S. Lohman T.G. Wang Z. Going S.B. In Human body composition. 2. Human Kinetics, Champaign, IL2005: 63-77
        • Sager R.
        • Güsewell S.
        • Rühli F.
        • Bender N.
        • Staub K.
        Multiple measures derived from 3D photonic body scans improve predictions of fat and muscle mass in young Swiss men.
        PLoS One. 2020; 15e0234552